Johansson Linda, Nikolajeff Fredrik, Johansson Stefan, Thorslund Sara
Department of Engineering Sciences, Angström Laboratory, Uppsala University, P.O. Box 534, SE-751 21 Uppsala, Sweden.
Anal Chem. 2009 Jul 1;81(13):5188-96. doi: 10.1021/ac802681r.
An acoustic microfluidic system for miniaturized fluorescence-activated cell sorting (microFACS) is presented. By excitation of a miniaturized piezoelectric transducer at 10 MHz in the microfluidic channel bottom, an acoustic standing wave is formed in the channel. The acoustic radiation force acting on a density interface causes fluidic movement, and the particles or cells on either side of the fluid interface are displaced in a direction perpendicular to the standing wave direction. The small size of the transducer enables individual manipulation of cells passing the transducer surface. At constant transducer activation the system was shown to accomplish up to 700 microm sideways displacement of 10 microm beads in a 1 mm wide channel. This is much larger than if utilizing the acoustic radiation force acting directly on particles, where the limitation in maximum displacement is between a node and an antinode which at 10 MHz is 35 microm. In the automatic sorting setup, the system was demonstrated to successfully sort single cells of E-GFP expressing beta-cells.
本文介绍了一种用于小型化荧光激活细胞分选(微型FACS)的声学微流控系统。通过在微流控通道底部以10 MHz的频率激发小型压电换能器,在通道中形成了驻波。作用于密度界面的声辐射力导致流体运动,流体界面两侧的颗粒或细胞在垂直于驻波方向的方向上发生位移。换能器的小尺寸使得能够对通过换能器表面的细胞进行单独操纵。在换能器持续激活的情况下,该系统在1 mm宽的通道中能够使10 µm的珠子实现高达700 µm的侧向位移。这比直接利用作用于颗粒的声辐射力要大得多,在直接利用声辐射力时,最大位移的限制在节点和波腹之间,在10 MHz时为35 µm。在自动分选设置中,该系统被证明能够成功分选表达E-GFP的β细胞的单细胞。