Ozcelik Adem, Gucluer Sinan, Keskin Tugce
Department of Mechanical Engineering, Aydin Adnan Menderes University, Aydin 09010, Türkiye.
Micromachines (Basel). 2023 Aug 8;14(8):1570. doi: 10.3390/mi14081570.
The separation of target cell species is an important step for various biomedical applications ranging from single cell studies to drug testing and cell-based therapies. The purity of cell solutions is critical for therapeutic application. For example, dead cells and debris can negatively affect the efficacy of cell-based therapies. This study presents a cost-effective method for the continuous separation of live and dead cells using a 3D resin-printed microfluidic device. Saccharomyces cerevisiae yeast cells are used for cell separation experiments. Both numerical and experimental studies are presented to show the effectiveness of the presented device for the isolation of dead cells from cell solutions. The experimental results show that the 3D-printed microfluidic device successfully separates live and dead cells based on density differences. Separation efficiencies of over 95% are achieved at optimum flow rates, resulting in purer cell populations in the outlets. This study highlights the simplicity, cost-effectiveness, and potential applications of the 3D-printed microfluidic device for cell separation. The implementation of 3D printing technology in microfluidics holds promise for advancing the field and enabling the production of customized devices for biomedical applications.
从单细胞研究到药物测试以及基于细胞的治疗等各种生物医学应用中,目标细胞种类的分离都是重要的一步。细胞溶液的纯度对于治疗应用至关重要。例如,死细胞和细胞碎片会对基于细胞的治疗效果产生负面影响。本研究提出了一种使用3D树脂打印微流控装置连续分离活细胞和死细胞的经济有效方法。酿酒酵母细胞用于细胞分离实验。通过数值研究和实验研究来展示所提出的装置从细胞溶液中分离死细胞的有效性。实验结果表明,3D打印微流控装置基于密度差异成功分离了活细胞和死细胞。在最佳流速下实现了超过95%的分离效率,从而在出口处得到更纯净的细胞群体。本研究突出了3D打印微流控装置在细胞分离方面的简单性、成本效益和潜在应用。3D打印技术在微流控中的应用有望推动该领域发展,并实现用于生物医学应用的定制装置的生产。