Suppr超能文献

用于磁共振力显微镜的分层贝叶斯稀疏图像重建

Hierarchical Bayesian sparse image reconstruction with application to MRFM.

作者信息

Dobigeon Nicolas, Hero Alfred O, Tourneret Jean-Yves

机构信息

Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109-2122, USA.

出版信息

IEEE Trans Image Process. 2009 Sep;18(9):2059-70. doi: 10.1109/TIP.2009.2024067. Epub 2009 May 29.

Abstract

This paper presents a hierarchical Bayesian model to reconstruct sparse images when the observations are obtained from linear transformations and corrupted by an additive white Gaussian noise. Our hierarchical Bayes model is well suited to such naturally sparse image applications as it seamlessly accounts for properties such as sparsity and positivity of the image via appropriate Bayes priors. We propose a prior that is based on a weighted mixture of a positive exponential distribution and a mass at zero. The prior has hyperparameters that are tuned automatically by marginalization over the hierarchical Bayesian model. To overcome the complexity of the posterior distribution, a Gibbs sampling strategy is proposed. The Gibbs samples can be used to estimate the image to be recovered, e.g., by maximizing the estimated posterior distribution. In our fully Bayesian approach, the posteriors of all the parameters are available. Thus, our algorithm provides more information than other previously proposed sparse reconstruction methods that only give a point estimate. The performance of the proposed hierarchical Bayesian sparse reconstruction method is illustrated on synthetic data and real data collected from a tobacco virus sample using a prototype MRFM instrument.

摘要

本文提出了一种分层贝叶斯模型,用于在观测值通过线性变换获得并被加性高斯白噪声破坏时重建稀疏图像。我们的分层贝叶斯模型非常适合此类自然稀疏图像应用,因为它通过适当的贝叶斯先验无缝地考虑了图像的稀疏性和正性等属性。我们提出了一种基于正指数分布和零处质量的加权混合的先验。该先验具有通过在分层贝叶斯模型上进行边缘化自动调整的超参数。为了克服后验分布的复杂性,提出了一种吉布斯采样策略。吉布斯样本可用于估计要恢复的图像,例如,通过最大化估计的后验分布。在我们的全贝叶斯方法中,所有参数的后验都是可用的。因此,我们的算法比其他仅给出点估计的先前提出的稀疏重建方法提供了更多信息。所提出的分层贝叶斯稀疏重建方法的性能在使用原型MRFM仪器从烟草病毒样本收集的合成数据和真实数据上得到了说明。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验