Center for Modeling, Simulation and Imaging in Medicine (CeMSIM), Rensselaer Polytechnic Institute, Troy, New York, USA.
J Biophotonics. 2022 Dec;15(12):e202200133. doi: 10.1002/jbio.202200133. Epub 2022 Aug 13.
Single-pixel computational imaging can leverage highly sensitive detectors that concurrently acquire data across spectral and temporal domains. For molecular imaging, such methodology enables to collect rich intensity and lifetime multiplexed fluorescence datasets. Herein we report on the application of a single-pixel structured light-based platform for macroscopic imaging of tissue autofluorescence. The super-continuum visible excitation and hyperspectral single-pixel detection allow for parallel characterization of autofluorescence intensity and lifetime. Furthermore, we exploit a deep learning based data processing pipeline, to perform autofluorescence unmixing while yielding the autofluorophores' concentrations. The full scheme (setup and processing) is validated in silico and in vitro with clinically relevant autofluorophores flavin adenine dinucleotide, riboflavin, and protoporphyrin. The presented results demonstrate the potential of the methodology for macroscopically quantifying the intensity and lifetime of autofluorophores, with higher specificity for cases of mixed emissions, which are ubiquitous in autofluorescence and multiplexed in vivo imaging.
单像素计算成像可以利用高灵敏度的探测器,在光谱和时间域上同时获取数据。对于分子成像,这种方法可以采集丰富的强度和寿命多重荧光数据集。本文报告了一种单像素结构光平台在组织自发荧光宏观成像中的应用。超连续可见激发和超光谱单像素检测允许对自发荧光强度和寿命进行并行表征。此外,我们利用基于深度学习的数据处理管道,在不产生自发荧光团浓度的情况下,进行自发荧光解混。该完整方案(设置和处理)在计算机模拟和临床相关自发荧光团黄素腺嘌呤二核苷酸、核黄素和原卟啉的体外进行了验证。所呈现的结果表明,该方法具有宏观量化自发荧光团强度和寿命的潜力,对于混合发射情况具有更高的特异性,这种情况在自发荧光和多重体内成像中普遍存在。