Suppr超能文献

计算的宏观寿命成像和自发荧光浓度解混。

Computational macroscopic lifetime imaging and concentration unmixing of autofluorescence.

机构信息

Center for Modeling, Simulation and Imaging in Medicine (CeMSIM), Rensselaer Polytechnic Institute, Troy, New York, USA.

出版信息

J Biophotonics. 2022 Dec;15(12):e202200133. doi: 10.1002/jbio.202200133. Epub 2022 Aug 13.

Abstract

Single-pixel computational imaging can leverage highly sensitive detectors that concurrently acquire data across spectral and temporal domains. For molecular imaging, such methodology enables to collect rich intensity and lifetime multiplexed fluorescence datasets. Herein we report on the application of a single-pixel structured light-based platform for macroscopic imaging of tissue autofluorescence. The super-continuum visible excitation and hyperspectral single-pixel detection allow for parallel characterization of autofluorescence intensity and lifetime. Furthermore, we exploit a deep learning based data processing pipeline, to perform autofluorescence unmixing while yielding the autofluorophores' concentrations. The full scheme (setup and processing) is validated in silico and in vitro with clinically relevant autofluorophores flavin adenine dinucleotide, riboflavin, and protoporphyrin. The presented results demonstrate the potential of the methodology for macroscopically quantifying the intensity and lifetime of autofluorophores, with higher specificity for cases of mixed emissions, which are ubiquitous in autofluorescence and multiplexed in vivo imaging.

摘要

单像素计算成像可以利用高灵敏度的探测器,在光谱和时间域上同时获取数据。对于分子成像,这种方法可以采集丰富的强度和寿命多重荧光数据集。本文报告了一种单像素结构光平台在组织自发荧光宏观成像中的应用。超连续可见激发和超光谱单像素检测允许对自发荧光强度和寿命进行并行表征。此外,我们利用基于深度学习的数据处理管道,在不产生自发荧光团浓度的情况下,进行自发荧光解混。该完整方案(设置和处理)在计算机模拟和临床相关自发荧光团黄素腺嘌呤二核苷酸、核黄素和原卟啉的体外进行了验证。所呈现的结果表明,该方法具有宏观量化自发荧光团强度和寿命的潜力,对于混合发射情况具有更高的特异性,这种情况在自发荧光和多重体内成像中普遍存在。

相似文献

1
Computational macroscopic lifetime imaging and concentration unmixing of autofluorescence.
J Biophotonics. 2022 Dec;15(12):e202200133. doi: 10.1002/jbio.202200133. Epub 2022 Aug 13.
2
High compression deep learning based single-pixel hyperspectral macroscopic fluorescence lifetime imaging .
Biomed Opt Express. 2020 Sep 2;11(10):5401-5424. doi: 10.1364/BOE.396771. eCollection 2020 Oct 1.
3
UNMIX-ME: spectral and lifetime fluorescence unmixing via deep learning.
Biomed Opt Express. 2020 Jun 19;11(7):3857-3874. doi: 10.1364/BOE.391992. eCollection 2020 Jul 1.
5
Clinical applications of non-invasive multi and hyperspectral imaging of cell and tissue autofluorescence beyond oncology.
J Biophotonics. 2023 Apr;16(4):e202200264. doi: 10.1002/jbio.202200264. Epub 2023 Jan 24.
6
Multiplexed imaging in live cells using pulsed interleaved excitation spectral FLIM.
Opt Express. 2024 Jan 29;32(3):3290-3307. doi: 10.1364/OE.505667.
7
Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging.
Nat Photonics. 2017;11:411-414. doi: 10.1038/NPHOTON.2017.82. Epub 2017 Jun 5.
9
Fluorescence quenching of free and bound NADH in HeLa cells determined by hyperspectral imaging and unmixing of cell autofluorescence.
Biomed Opt Express. 2017 Feb 10;8(3):1488-1498. doi: 10.1364/BOE.8.001488. eCollection 2017 Mar 1.
10
Distributed Compressed Hyperspectral Sensing Imaging Based on Spectral Unmixing.
Sensors (Basel). 2020 Apr 17;20(8):2305. doi: 10.3390/s20082305.

引用本文的文献

1
Enhanced porphyrin-based hypoxia imaging by temporal oversampling of delayed fluorescence signal.
J Biomed Opt. 2025 Feb;30(Suppl 2):S23903. doi: 10.1117/1.JBO.30.S2.S23903. Epub 2025 Jan 28.

本文引用的文献

2
Deep Learning in Biomedical Optics.
Lasers Surg Med. 2021 Aug;53(6):748-775. doi: 10.1002/lsm.23414. Epub 2021 May 20.
3
High compression deep learning based single-pixel hyperspectral macroscopic fluorescence lifetime imaging .
Biomed Opt Express. 2020 Sep 2;11(10):5401-5424. doi: 10.1364/BOE.396771. eCollection 2020 Oct 1.
4
UNMIX-ME: spectral and lifetime fluorescence unmixing via deep learning.
Biomed Opt Express. 2020 Jun 19;11(7):3857-3874. doi: 10.1364/BOE.391992. eCollection 2020 Jul 1.
5
Macroscopic fluorescence lifetime topography enhanced via spatial frequency domain imaging.
Opt Lett. 2020 Aug 1;45(15):4232-4235. doi: 10.1364/OL.397605.
6
Classification of T-cell activation via autofluorescence lifetime imaging.
Nat Biomed Eng. 2021 Jan;5(1):77-88. doi: 10.1038/s41551-020-0592-z. Epub 2020 Jul 27.
7
Fast fit-free analysis of fluorescence lifetime imaging via deep learning.
Proc Natl Acad Sci U S A. 2019 Nov 26;116(48):24019-24030. doi: 10.1073/pnas.1912707116. Epub 2019 Nov 12.
9
Net-FLICS: fast quantitative wide-field fluorescence lifetime imaging with compressed sensing - a deep learning approach.
Light Sci Appl. 2019 Mar 6;8:26. doi: 10.1038/s41377-019-0138-x. eCollection 2019.
10
Label-free assessment of carotid artery biochemical composition using fiber-based fluorescence lifetime imaging.
Biomed Opt Express. 2018 Aug 6;9(9):4064-4076. doi: 10.1364/BOE.9.004064. eCollection 2018 Sep 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验