Suppr超能文献

利用RNA干扰对内耳基因表达进行治疗性调控。

Therapeutic regulation of gene expression in the inner ear using RNA interference.

作者信息

Maeda Yukihide, Sheffield Abraham M, Smith Richard J H

出版信息

Adv Otorhinolaryngol. 2009;66:13-36. doi: 10.1159/000218205. Epub 2009 Jun 2.

Abstract

Targeting and downregulating specific genes with antisense and decoy oligonucleotides, ribozymes or RNA interference (RNAi) offer the theoretical potential of altering a disease phenotype. Here we review the molecular mechanism behind the in vivo application of RNAi-mediated gene silencing, focusing on its application to the inner ear. RNAi is a physiological phenomenon in which small, double-stranded RNA molecules (small interfering RNA, siRNA) reduce expression of homologous genes. Notable for its exquisite sequence specificity, it is ideally applied to diseases caused by a gain-of-function mechanism of action. Types of deafness in which gain-of-function mutations are observed include DFNA2 (KCNQ4), DFNA3 (GJB2) and DFNA5 (DFNA5). Several strategies can be used to deliver siRNA into the inner ear, including cationic liposomes, adeno-associated and lentiviral vectors, and adenoviral vectors. Transduction efficiency with cationic liposomes is low and the effect is transient; with adeno-associated and lentiviral vectors, long-term transfection is possible using a small hairpin RNA expression cassette.

摘要

使用反义寡核苷酸、诱饵寡核苷酸、核酶或RNA干扰(RNAi)靶向并下调特定基因,为改变疾病表型提供了理论潜力。在此,我们综述RNAi介导的基因沉默在体内应用背后的分子机制,重点关注其在内耳中的应用。RNAi是一种生理现象,其中小的双链RNA分子(小干扰RNA,siRNA)会降低同源基因的表达。因其具有高度精确的序列特异性而引人注目,它非常适合应用于由功能获得性作用机制引起的疾病。观察到功能获得性突变的耳聋类型包括DFNA2(KCNQ4)、DFNA3(GJB2)和DFNA5(DFNA5)。有几种策略可用于将siRNA递送至内耳,包括阳离子脂质体、腺相关病毒和慢病毒载体以及腺病毒载体。阳离子脂质体的转导效率低且效果是短暂的;使用腺相关病毒和慢病毒载体,可通过小发夹RNA表达盒实现长期转染。

相似文献

1
Therapeutic regulation of gene expression in the inner ear using RNA interference.
Adv Otorhinolaryngol. 2009;66:13-36. doi: 10.1159/000218205. Epub 2009 Jun 2.
2
Gene transfer in human vestibular epithelia and the prospects for inner ear gene therapy.
Laryngoscope. 2008 May;118(5):821-31. doi: 10.1097/MLG.0b013e318164d0aa.
3
An in vitro model system to study gene therapy in the human inner ear.
Gene Ther. 2007 Aug;14(15):1121-31. doi: 10.1038/sj.gt.3302980. Epub 2007 Jun 14.
4
Dominant-negative inhibition of M-like potassium conductances in hair cells of the mouse inner ear.
J Neurosci. 2007 Aug 15;27(33):8940-51. doi: 10.1523/JNEUROSCI.2085-07.2007.
5
Impaired surface expression and conductance of the KCNQ4 channel lead to sensorineural hearing loss.
J Cell Mol Med. 2013 Jul;17(7):889-900. doi: 10.1111/jcmm.12080. Epub 2013 Jun 11.
6
Small RNA: can RNA interference be exploited for therapy?
Lancet. 2003 Oct 25;362(9393):1401-3. doi: 10.1016/S0140-6736(03)14637-5.
7
KCNQ4 mutations associated with nonsyndromic progressive sensorineural hearing loss.
Curr Opin Otolaryngol Head Neck Surg. 2008 Oct;16(5):441-4. doi: 10.1097/MOO.0b013e32830f4aa3.
8
Gene transfer in inner ear cells: a challenging race.
Gene Ther. 2013 Mar;20(3):237-47. doi: 10.1038/gt.2012.51. Epub 2012 Jun 28.
9
Expressing functional siRNAs in mammalian cells using convergent transcription.
BMC Biotechnol. 2003 Nov 6;3:21. doi: 10.1186/1472-6750-3-21.
10
Gene therapy for the inner ear.
Hear Res. 2013 Mar;297:99-105. doi: 10.1016/j.heares.2012.11.017. Epub 2012 Dec 21.

引用本文的文献

1
Hearing loss: a global view for gene therapy approaches and challenges.
Eur J Pediatr. 2025 Aug 27;184(9):578. doi: 10.1007/s00431-025-06426-9.
2
Principles of gene therapy of the inner ear.
Curr Opin Otolaryngol Head Neck Surg. 2025 Oct 1;33(5):295-305. doi: 10.1097/MOO.0000000000001067. Epub 2025 Aug 1.
3
Current Advances in Adeno-Associated Virus-Mediated Gene Therapy to Prevent Acquired Hearing Loss.
J Assoc Res Otolaryngol. 2022 Oct;23(5):569-578. doi: 10.1007/s10162-022-00866-y. Epub 2022 Aug 24.
5
Progress in Gene Editing Tools and Their Potential for Correcting Mutations Underlying Hearing and Vision Loss.
Front Genome Ed. 2021 Oct 28;3:737632. doi: 10.3389/fgeed.2021.737632. eCollection 2021.
6
Therapeutic Application of Mesenchymal Stem Cells for Cochlear Regeneration.
In Vivo. 2021 Jan-Feb;35(1):13-22. doi: 10.21873/invivo.12227.
7
Inner Ear Gene Therapies Take Off: Current Promises and Future Challenges.
J Clin Med. 2020 Jul 21;9(7):2309. doi: 10.3390/jcm9072309.
9
CRISPR/Cas9: targeted genome editing for the treatment of hereditary hearing loss.
J Appl Genet. 2020 Feb;61(1):51-65. doi: 10.1007/s13353-019-00535-6. Epub 2020 Jan 7.
10
Genetic Therapies for Hearing Loss: Accomplishments and Remaining Challenges.
Neurosci Lett. 2019 Nov 20;713:134527. doi: 10.1016/j.neulet.2019.134527. Epub 2019 Oct 3.

本文引用的文献

1
NF-kappaB is required for survival of immature auditory hair cells in vitro.
J Assoc Res Otolaryngol. 2005 Sep;6(3):260-8. doi: 10.1007/s10162-005-0006-7.
2
Epigenetic manipulation of gene expression: a toolkit for cell biologists.
J Cell Biol. 2005 Jun 20;169(6):847-57. doi: 10.1083/jcb.200501053.
3
Antisense therapy for cancer.
Nat Rev Cancer. 2005 Jun;5(6):468-79. doi: 10.1038/nrc1631.
4
In vitro and in vivo suppression of GJB2 expression by RNA interference.
Hum Mol Genet. 2005 Jun 15;14(12):1641-50. doi: 10.1093/hmg/ddi172. Epub 2005 Apr 27.
5
RNA interference improves motor and neuropathological abnormalities in a Huntington's disease mouse model.
Proc Natl Acad Sci U S A. 2005 Apr 19;102(16):5820-5. doi: 10.1073/pnas.0501507102. Epub 2005 Apr 5.
6
Does gene therapy become pharmacotherapy?
Exp Physiol. 2005 May;90(3):307-13. doi: 10.1113/expphysiol.2005.030403. Epub 2005 Mar 18.
7
Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model.
Nat Med. 2005 Apr;11(4):429-33. doi: 10.1038/nm1205. Epub 2005 Mar 13.
9
Perspective: machines for RNAi.
Genes Dev. 2005 Mar 1;19(5):517-29. doi: 10.1101/gad.1284105.
10
NF-kappaB pathway protects cochlear hair cells from aminoglycoside-induced ototoxicity.
J Neurosci Res. 2005 Mar 1;79(5):644-51. doi: 10.1002/jnr.20392.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验