Jost J D, Home J P, Amini J M, Hanneke D, Ozeri R, Langer C, Bollinger J J, Leibfried D, Wineland D J
Time and Frequency Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA.
Nature. 2009 Jun 4;459(7247):683-5. doi: 10.1038/nature08006.
Hallmarks of quantum mechanics include superposition and entanglement. In the context of large complex systems, these features should lead to situations as envisaged in the 'Schrödinger's cat' thought experiment (where the cat exists in a superposition of alive and dead states entangled with a radioactive nucleus). Such situations are not observed in nature. This may be simply due to our inability to sufficiently isolate the system of interest from the surrounding environment-a technical limitation. Another possibility is some as-yet-undiscovered mechanism that prevents the formation of macroscopic entangled states. Such a limitation might depend on the number of elementary constituents in the system or on the types of degrees of freedom that are entangled. Tests of the latter possibility have been made with photons, atoms and condensed matter devices. One system ubiquitous to nature where entanglement has not been previously demonstrated consists of distinct mechanical oscillators. Here we demonstrate deterministic entanglement of separated mechanical oscillators, consisting of the vibrational states of two pairs of atomic ions held in different locations. We also demonstrate entanglement of the internal states of an atomic ion with a distant mechanical oscillator. These results show quantum entanglement in a degree of freedom that pervades the classical world. Such experiments may lead to the generation of entangled states of larger-scale mechanical oscillators, and offer possibilities for testing non-locality with mesoscopic systems. In addition, the control developed here is an important ingredient for scaling-up quantum information processing with trapped atomic ions.
量子力学的特征包括叠加和纠缠。在大型复杂系统的背景下,这些特征应该会导致出现类似于“薛定谔的猫”思想实验中所设想的情况(即猫处于与放射性原子核纠缠的活态和死态的叠加态)。然而,这种情况在自然界中并未被观察到。这可能仅仅是由于我们无法将感兴趣的系统与周围环境充分隔离——这是一个技术限制。另一种可能性是存在某种尚未被发现的机制,阻止宏观纠缠态的形成。这种限制可能取决于系统中基本成分的数量或纠缠的自由度类型。对于后一种可能性,已经使用光子、原子和凝聚态物质装置进行了测试。在自然界中普遍存在的一个尚未证明存在纠缠的系统是由不同的机械振荡器组成的。在这里,我们展示了分离的机械振荡器的确定性纠缠,它由位于不同位置的两对原子离子的振动状态组成。我们还展示了一个原子离子的内部状态与一个遥远的机械振荡器的纠缠。这些结果表明,在一个贯穿经典世界的自由度中存在量子纠缠。此类实验可能会导致产生更大规模机械振荡器的纠缠态,并为用介观系统测试非定域性提供可能性。此外,这里所开发的控制方法是利用捕获的原子离子扩大量子信息处理规模的一个重要因素