Gallego Sergi, Ortuño M, Neipp C, Márquez A, Beléndez A, Pascual I, Kelly J V, Sheridan J T
Opt Express. 2005 May 2;13(9):3543-57. doi: 10.1364/opex.13.003543.
One of the most interesting applications of photopolymers is as holographic recording materials for holographic memories. One of the basic requirements for this application is that the recording material thickness must be 500 microm or thicker. In recent years many 2-dimensional models have been proposed for the analysis of photopolymers. Good agreement between theoretical simulations and experimental results has been obtained for layers thinner than 200 microm. The attenuation of the light inside the material by Beer's law results in an attenuation of the index profile inside the material and in some cases the effective optical thickness of the material is lower than the physical thickness. This is an important and fundamental limitation in achieving high capacity holographic memories using photopolymers and cannot be analyzed using 2-D diffusion models. In this paper a model is proposed to describe the behavior of the photopolymers in 3-D. This model is applied to simulate the formation of profiles in depth for different photopolymer viscosities and different intensity attenuations inside the material.
光聚合物最有趣的应用之一是作为全息存储器的全息记录材料。该应用的基本要求之一是记录材料的厚度必须为500微米或更厚。近年来,已经提出了许多二维模型用于分析光聚合物。对于厚度小于200微米的层,理论模拟与实验结果之间取得了良好的一致性。根据比尔定律,材料内部光的衰减会导致材料内部折射率分布的衰减,在某些情况下,材料的有效光学厚度低于物理厚度。这是使用光聚合物实现高容量全息存储器的一个重要且基本的限制,并且无法使用二维扩散模型进行分析。本文提出了一个模型来描述光聚合物在三维空间中的行为。该模型用于模拟不同光聚合物粘度和材料内部不同强度衰减情况下深度方向上轮廓的形成。