Chemistry Department, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901, USA.
Environ Sci Pollut Res Int. 2010 Feb;17(2):453-61. doi: 10.1007/s11356-009-0170-0. Epub 2009 Jun 3.
BACKGROUND, AIM AND SCOPE: Photocatalytic oxidation using UV irradiation of TiO(2) has been studied extensively and has many potential industrial applications, including the degradation of recalcitrant contaminants in water and wastewater treatment. A limiting factor in the oxidation process is the recombination of conduction band electrons (e(-)(cb)) with electron holes (h(vb)(+)) on the irradiated TiO(2) surface; thus, in aqueous conditions, the presence of an effective electron scavenger will be beneficial to the efficiency of the oxidation process. Ferrate (FeO(4)(2-)) has received much recent attention as a water treatment chemical since it behaves simultaneously as an oxidant and coagulant. The combination of ferrate [Fe(VI)] with UV/TiO(2) photocatalysis offers an oxidation synergism arising from the Fe(VI) scavenging of e(-)(cb) and the corresponding beneficial formation of Fe(V) from the Fe(VI) reduction. This paper reviews recent studies concerning the photocatalytic oxidation of problematic pollutants with and without ferrate.
The paper reviews the published results of laboratory experiments designed to follow the photocatalytic degradation of selected contaminants of environmental significance and the influence of the experimental conditions (e.g. pH, reactant concentrations and dissolved oxygen). The specific compounds are as follows: ammonia, cyanate, formic acid, bisphenol-A, dibutyl- and dimethyl-phthalate and microcystin-LR. The principal focus in these studies has been on the rates of reaction rather than on reaction pathways and products.
The presence of UV/TiO(2) accelerates the chemical reduction of ferrate, and the reduction rate decreases with pH owing to deprotonation of ferrate ion. For all the selected contaminant substances, the photocatalytic oxidation rate was greater in the presence of ferrate, and this was believed to be synergistic rather than additive. The presence of dissolved oxygen in solution reduced the degradation rate of dimethyl phthalate in the ferrate/photocatalysis system. In the study of microcystin-LR, it was evident that an optimal ferrate concentration exists, whereby higher Fe(VI) concentrations above the optimum leads to a reduction in microcystin-LR degradation. In addition, the rate of microcystin-LR degradation was found to be strongly dependent on pH and was greatest at pH 6.
The initial rate of photocatalytic reduction under different conditions was analysed using a Langmuirian form. Decrease in rates in the presence of dissolved oxygen may be due to competition between oxygen and ferrate as electron scavengers and to non-productive radical species interactions. The reaction between ferrate(VI) and microcystins-LR in the pH range of 6.0-10.0 is most likely controlled by the protonated Fe(VI) species, HFeO(4)(-).
The photocatalytic oxidation of selected, recalcitrant contaminants was found to be significantly greater in the presence of ferrate, arising from the role of ferrate in inhibiting the h(vb)(+)-e(-)(cb) pair recombination on TiO(2) surfaces and the corresponding generation of highly oxidative Fe(V) species. The performance of the ferrate/photocatalysis system is strongly influenced by the reaction conditions, particularly the pH and dissolved oxygen concentration, arising from the complex nature of the interactions between the catalyst and the solution. Overall, the treatment performance of the Fe(VI)-TiO(2)-UV system is generally superior to alternative chemical oxidation methods.
The formation of intermediate Fe(V) species in the photocatalytic reduction of ferrate(VI) requires confirmation, and a method involving electron paramagnetic resonance spectroscopy could be applied for this. The reactivity of Fe(V) with the selected contaminants is required in order to better understand the role of ferrate in the Fe(VI)-TiO(2)-UV oxidation system. To increase the practical utility of the system, it is recommended that future studies involving the photocatalytic oxidation of pollutants in the presence of ferrate(VI) should focus on developing modified TiO(2) surfaces that are photocatalytic under visible light conditions.
背景、目的和范围:使用 UV 辐照 TiO(2)的光催化氧化已得到广泛研究,并具有许多潜在的工业应用,包括降解水中和废水中的难处理污染物。氧化过程的一个限制因素是在辐照 TiO(2)表面上导带电子 (e(-)(cb))与电子空穴 (h(vb)(+))的复合;因此,在水条件下,存在有效的电子清除剂将有利于氧化过程的效率。高铁酸盐 (FeO(4)(2-))作为水处理化学物质受到了广泛关注,因为它同时表现为氧化剂和凝聚剂。高铁酸盐 [Fe(VI)]与 UV/TiO(2)光催化的结合提供了一种氧化协同作用,这是由于 Fe(VI)清除 e(-)(cb)和相应地从 Fe(VI)还原形成 Fe(V)的有益形成。本文综述了最近关于有和没有高铁酸盐的问题污染物光催化氧化的研究。
本文综述了实验室实验的结果,旨在跟踪选定的环境意义污染物的光催化降解和实验条件的影响 (例如 pH、反应物浓度和溶解氧)。具体化合物如下:氨、氰酸盐、甲酸、双酚-A、二丁基和二甲基邻苯二甲酸酯和微囊藻毒素-LR。这些研究的主要重点是反应速率,而不是反应途径和产物。
UV/TiO(2)的存在加速了高铁酸盐的化学还原,还原速率随 pH 降低而降低,这是由于高铁酸盐离子的去质子化。对于所有选定的污染物物质,高铁酸盐的存在都会加速光催化氧化速率,这被认为是协同作用而不是加成作用。溶液中溶解氧的存在降低了高铁酸盐/光催化系统中二甲基邻苯二甲酸酯的降解速率。在微囊藻毒素-LR 的研究中,显然存在最佳的高铁酸盐浓度,其中高于最佳浓度的更高 Fe(VI)浓度会导致微囊藻毒素-LR 降解减少。此外,微囊藻毒素-LR 的降解速率强烈依赖于 pH 值,在 pH 值为 6 时最大。
在不同条件下,光催化还原的初始速率使用 Langmuirian 形式进行了分析。在存在溶解氧的情况下,速率的降低可能是由于氧和高铁酸盐作为电子清除剂之间的竞争以及非生产性自由基物种相互作用所致。在 pH 值为 6.0-10.0 的范围内,高铁酸盐(VI)与微囊藻毒素-LR 的反应最可能受质子化 Fe(VI)物种 HFeO(4)(-)控制。
在存在高铁酸盐的情况下,选定的难处理污染物的光催化氧化被发现显著增加,这是由于高铁酸盐在抑制 TiO(2)表面上 h(vb)(+)-e(-)(cb)对复合以及相应地生成高氧化性 Fe(V)物种方面的作用。高铁酸盐/光催化系统的性能受到反应条件的强烈影响,特别是 pH 值和溶解氧浓度,这是由于催化剂和溶液之间的相互作用的复杂性质所致。总体而言,Fe(VI)-TiO(2)-UV 系统的处理性能通常优于替代化学氧化方法。
需要确认在高铁酸盐(VI)的光催化还原中形成中间 Fe(V)物种,并且可以应用电子顺磁共振光谱法进行该确认。需要了解 Fe(V)与选定污染物的反应性,以便更好地理解高铁酸盐在 Fe(VI)-TiO(2)-UV 氧化系统中的作用。为了提高系统的实际效用,建议未来涉及在高铁酸盐(VI)存在下光催化氧化污染物的研究应集中于开发在可见光条件下具有光催化活性的改性 TiO(2)表面。