Suppr超能文献

用于修复同晶型SO掺杂KFeO的结构改性以提高超铁电池的稳定性并增强其放电性能

Structural modification of isomorphous SO -doped KFeO for remediating the stability and enhancing the discharge of super-iron battery.

作者信息

Yan Chao, Zhu Lingyue, Dong Jing, Gu Di, Jiang Hong, Wang Baohui

机构信息

School of Chemistry and Chemical Engineering, Northeast Petroleum University, No. 199 Fazhan Road, High-tech Development Zone, Daqing 163318, People's Republic of China.

出版信息

R Soc Open Sci. 2019 Jan 23;6(1):180919. doi: 10.1098/rsos.180919. eCollection 2019 Jan.

Abstract

In the paper, the isomorphous doped KFeO, aimed at the remediation of the discharge and stability of the super-iron battery, was first synthesized for doping and reforming the KFeO crystalline structure via a facile co-precipitation and mechanochemistry. Afterwards, the compared cathodes were assembled by the undoped and doped KFeO for an evaluation of the discharge and stability in the AAA super-iron battery system. The results show that the small amounts of KSO were doped into the KFeO in the calculated form of KFeSO by the isomorphous substitution. The doped KFeO cathodes/batteries exhibited an excellent discharge with a normal discharge profile. The cathodes doped by two techniques had significantly enhanced the discharge capacity of the super-iron battery with an increase of 10-30% compared to the undoped KFeO. Moreover, the stability of the KFeO cathodes was obviously remediated by the isomorphous doping. The shelf time of the doped KFeO cathodes was prolonged by an increase of about 10% in comparison of the undoped KFeO cathode. The desirable enhancements could be attributed to doping and reforming the similar building block and isomorphous into the tetrahedral and crystalline in the form of the isomorphous substitution and filling vacancies.

摘要

在该论文中,针对超铁电池的放电性能和稳定性进行修复的同晶掺杂KFeO,首先通过简便的共沉淀和机械化学法合成,用于对KFeO晶体结构进行掺杂和改性。之后,用未掺杂和掺杂的KFeO组装对比阴极,以评估AAA超铁电池系统中的放电性能和稳定性。结果表明,少量的KSO以KFeSO的计算形式通过同晶取代掺杂到KFeO中。掺杂的KFeO阴极/电池表现出优异的放电性能,具有正常的放电曲线。通过两种技术掺杂的阴极显著提高了超铁电池的放电容量,与未掺杂的KFeO相比增加了10 - 30%。此外,同晶掺杂明显改善了KFeO阴极的稳定性。与未掺杂的KFeO阴极相比,掺杂的KFeO阴极的储存时间延长了约10%。这些理想的增强效果可归因于通过同晶取代和填充空位的形式,将相似的结构单元和同晶掺入四面体和晶体中进行掺杂和改性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22de/6366229/a7f3af0d3270/rsos180919-g1.jpg

相似文献

2
Er-Doped LiNiMnO₄ Cathode Material with Enhanced Cycling Stability for Lithium-Ion Batteries.
Materials (Basel). 2017 Jul 27;10(8):859. doi: 10.3390/ma10080859.
3
Nitrogen-Doped Perovskite as a Bifunctional Cathode Catalyst for Rechargeable Lithium-Oxygen Batteries.
ACS Appl Mater Interfaces. 2018 Feb 14;10(6):5543-5550. doi: 10.1021/acsami.7b17289. Epub 2018 Jan 30.
6
Iron-Doped Sodium Vanadium Oxyflurophosphate Cathodes for Sodium-Ion Batteries-Electrochemical Characterization and In Situ Measurements of Heat Generation.
ACS Appl Mater Interfaces. 2020 Sep 16;12(37):41765-41775. doi: 10.1021/acsami.0c11616. Epub 2020 Sep 3.
8
Enhancing high-rate and elevated-temperature properties of Ni-Mg co-doped LiMnO cathodes for Li-ion batteries.
J Colloid Interface Sci. 2019 Nov 1;555:64-71. doi: 10.1016/j.jcis.2019.07.078. Epub 2019 Jul 27.
9
O3-NaFeNiMnAlO Cathodes with Improved Air Stability for Na-Ion Batteries.
ACS Appl Mater Interfaces. 2021 Jul 21;13(28):33015-33023. doi: 10.1021/acsami.1c07554. Epub 2021 Jul 9.
10
Effect of Al and Fe Doping on the Electrochemical Behavior of LiNiMnCoO Li-Rich Cathode Material.
Materials (Basel). 2022 Nov 19;15(22):8225. doi: 10.3390/ma15228225.

本文引用的文献

1
Mechanism for the oxidation of phenol by sulfatoferrate(VI): Comparison with various oxidants.
J Environ Manage. 2015 Jul 1;157:287-96. doi: 10.1016/j.jenvman.2015.04.004. Epub 2015 Apr 24.
2
Degradability of hexachlorocyclohexanes in water using ferrate (VI).
Water Sci Technol. 2015;71(3):405-11. doi: 10.2166/wst.2014.516.
3
Ferrates: greener oxidants with multimodal action in water treatment technologies.
Acc Chem Res. 2015 Feb 17;48(2):182-91. doi: 10.1021/ar5004219. Epub 2015 Feb 10.
4
Reaction kinetics and oxidation products formation in the degradation of ciprofloxacin and ibuprofen by ferrate(VI).
Chemosphere. 2015 Jan;119 Suppl:S95-100. doi: 10.1016/j.chemosphere.2014.04.006. Epub 2014 Apr 26.
5
Ferrate(VI) enhanced photocatalytic oxidation of pollutants in aqueous TiO2 suspensions.
Environ Sci Pollut Res Int. 2010 Feb;17(2):453-61. doi: 10.1007/s11356-009-0170-0. Epub 2009 Jun 3.
6
Disinfection performance of Fe(VI) in water and wastewater: a review.
Water Sci Technol. 2007;55(1-2):225-32. doi: 10.2166/wst.2007.019.
7
Cathodic chemistry of high performance Zr coated alkaline materials.
Chem Commun (Camb). 2006 Nov 4(41):4341-3. doi: 10.1039/b608716g. Epub 2006 Sep 5.
8
Electrochemical alkaline Fe(VI) water purification and remediation.
Environ Sci Technol. 2005 Oct 15;39(20):8071-6. doi: 10.1021/es051084k.
9
The influence of pH on the degradation of phenol and chlorophenols by potassium ferrate.
Chemosphere. 2004 Sep;56(10):949-56. doi: 10.1016/j.chemosphere.2004.04.060.
10
A Novel Oxidizing Reagent Based on Potassium Ferrate(VI)(1).
J Org Chem. 1996 Sep 6;61(18):6360-6370. doi: 10.1021/jo960633p.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验