Suppr超能文献

关于主动轮廓在CT骨自动分割中的可行性研究。

A study on the feasibility of active contours on automatic CT bone segmentation.

作者信息

Truc Phan T H, Kim Tae-Seong, Lee Sungyoung, Lee Young-Koo

机构信息

Department of Computer Engineering, Kyung Hee University, Gyeonggi-do, Republic of Korea.

出版信息

J Digit Imaging. 2010 Dec;23(6):793-805. doi: 10.1007/s10278-009-9210-z. Epub 2009 Jun 4.

Abstract

Automatic bone segmentation of computed tomography (CT) images is an important step in image-guided surgery that requires both high accuracy and minimal user interaction. Previous attempts include global thresholding, region growing, region competition, watershed segmentation, and parametric active contour (AC) approaches, but none claim fully satisfactory performance. Recently, geometric or level-set-based AC models have been developed and appear to have characteristics suitable for automatic bone segmentation such as initialization insensitivity and topology adaptability. In this study, we have tested the feasibility of five level-set-based AC approaches for automatic CT bone segmentation with both synthetic and real CT images: namely, the geometric AC, geodesic AC, gradient vector flow fast geometric AC, Chan-Vese (CV) AC, and our proposed density distance augmented CV AC (Aug. CV AC). Qualitative and quantitative evaluations have been made in comparison with the segmentation results from standard commercial software and a medical expert. The first three models showed their robustness to various image contrasts, but their performances decreased much when noise level increased. On the contrary, the CV AC's performance was more robust to noise, yet dependent on image contrast. On the other hand, the Aug. CV AC demonstrated its robustness to both noise and contrast levels and yielded improved performances on a set of real CT data compared with the commercial software, proving its suitability for automatic bone segmentation from CT images.

摘要

计算机断层扫描(CT)图像的自动骨分割是图像引导手术中的重要步骤,这需要高精度和最少的用户交互。以往的尝试包括全局阈值化、区域生长、区域竞争、分水岭分割和参数主动轮廓(AC)方法,但都没有声称具有完全令人满意的性能。最近,基于几何或水平集的AC模型已经被开发出来,并且似乎具有适合自动骨分割的特性,如初始化不敏感性和拓扑适应性。在本研究中,我们用合成CT图像和真实CT图像测试了五种基于水平集的AC方法用于自动CT骨分割的可行性:即几何AC、测地线AC、梯度向量流快速几何AC、Chan-Vese(CV)AC以及我们提出的密度距离增强CV AC(Aug. CV AC)。与标准商业软件和医学专家的分割结果相比,我们进行了定性和定量评估。前三种模型对各种图像对比度显示出鲁棒性,但当噪声水平增加时,它们的性能大幅下降。相反,CV AC的性能对噪声更鲁棒,但依赖于图像对比度。另一方面,Aug. CV AC对噪声和对比度水平都表现出鲁棒性,并且与商业软件相比,在一组真实CT数据上表现出更好的性能,证明了其适用于从CT图像中进行自动骨分割。

相似文献

1
A study on the feasibility of active contours on automatic CT bone segmentation.
J Digit Imaging. 2010 Dec;23(6):793-805. doi: 10.1007/s10278-009-9210-z. Epub 2009 Jun 4.
2
A density distance augmented Chan-Vese active contour for CT bone segmentation.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:482-5. doi: 10.1109/IEMBS.2008.4649195.
3
An Independent Active Contours Segmentation framework for bone micro-CT images.
Comput Biol Med. 2017 Aug 1;87:358-370. doi: 10.1016/j.compbiomed.2017.06.016. Epub 2017 Jun 19.
4
Automatic and hierarchical segmentation of the human skeleton in CT images.
Phys Med Biol. 2017 Apr 7;62(7):2812-2833. doi: 10.1088/1361-6560/aa6055. Epub 2017 Feb 14.
5
Fast and automatic bone segmentation and registration of 3D ultrasound to CT for the full pelvic anatomy: a comparative study.
Int J Comput Assist Radiol Surg. 2018 Oct;13(10):1515-1524. doi: 10.1007/s11548-018-1788-5. Epub 2018 May 26.
6
Homogeneity- and density distance-driven active contours for medical image segmentation.
Comput Biol Med. 2011 May;41(5):292-301. doi: 10.1016/j.compbiomed.2011.03.006. Epub 2011 Apr 9.
8
A pilot study for segmentation of pharyngeal and sino-nasal airway subregions by automatic contour initialization.
Int J Comput Assist Radiol Surg. 2017 Nov;12(11):1877-1893. doi: 10.1007/s11548-017-1650-1. Epub 2017 Jul 28.
10
Automatic segmentation of vertebral contours from CT images using fuzzy corners.
Comput Biol Med. 2016 May 1;72:75-89. doi: 10.1016/j.compbiomed.2016.03.009. Epub 2016 Mar 18.

引用本文的文献

1
Automatic Segmentation and Measurement on Knee Computerized Tomography Images for Patellar Dislocation Diagnosis.
Comput Math Methods Med. 2020 Jan 28;2020:1782531. doi: 10.1155/2020/1782531. eCollection 2020.
2
Quantitative analysis of the patellofemoral motion pattern using semi-automatic processing of 4D CT data.
Int J Comput Assist Radiol Surg. 2016 Sep;11(9):1731-41. doi: 10.1007/s11548-016-1357-8. Epub 2016 Mar 1.
3
PET Index of Bone Glucose Metabolism (PIBGM) Classification of PET/CT Data for Fever of Unknown Origin Diagnosis.
PLoS One. 2015 Jun 15;10(6):e0130173. doi: 10.1371/journal.pone.0130173. eCollection 2015.

本文引用的文献

1
A density distance augmented Chan-Vese active contour for CT bone segmentation.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:482-5. doi: 10.1109/IEMBS.2008.4649195.
2
Semi-automated phalanx bone segmentation using the expectation maximization algorithm.
J Digit Imaging. 2009 Oct;22(5):483-91. doi: 10.1007/s10278-008-9151-y. Epub 2008 Sep 3.
3
Snakes, shapes, and gradient vector flow.
IEEE Trans Image Process. 1998;7(3):359-69. doi: 10.1109/83.661186.
4
Active contours without edges.
IEEE Trans Image Process. 2001;10(2):266-77. doi: 10.1109/83.902291.
5
Region-based contrast enhancement of mammograms.
IEEE Trans Med Imaging. 1992;11(3):392-406. doi: 10.1109/42.158944.
7
A hierarchical 3D segmentation method and the definition of vertebral body coordinate systems for QCT of the lumbar spine.
Med Image Anal. 2006 Aug;10(4):560-77. doi: 10.1016/j.media.2006.05.005. Epub 2006 Jul 7.
8
Image-guidance for surgical procedures.
Phys Med Biol. 2006 Jul 21;51(14):R505-40. doi: 10.1088/0031-9155/51/14/R01. Epub 2006 Jun 26.
9
Validation of bone segmentation and improved 3-D registration using contour coherency in CT data.
IEEE Trans Med Imaging. 2006 Mar;25(3):324-34. doi: 10.1109/TMI.2005.863834.
10
An estimation/correction algorithm for detecting bone edges in CT images.
IEEE Trans Med Imaging. 2005 Aug;24(8):997-1010. doi: 10.1109/TMI.2005.850541.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验