Mathematics Department, University of California, Los Angeles, CA 90095-1555, USA.
IEEE Trans Image Process. 2001;10(2):266-77. doi: 10.1109/83.902291.
We propose a new model for active contours to detect objects in a given image, based on techniques of curve evolution, Mumford-Shah (1989) functional for segmentation and level sets. Our model can detect objects whose boundaries are not necessarily defined by the gradient. We minimize an energy which can be seen as a particular case of the minimal partition problem. In the level set formulation, the problem becomes a "mean-curvature flow"-like evolving the active contour, which will stop on the desired boundary. However, the stopping term does not depend on the gradient of the image, as in the classical active contour models, but is instead related to a particular segmentation of the image. We give a numerical algorithm using finite differences. Finally, we present various experimental results and in particular some examples for which the classical snakes methods based on the gradient are not applicable. Also, the initial curve can be anywhere in the image, and interior contours are automatically detected.
我们提出了一种新的主动轮廓模型,用于检测给定图像中的目标,该模型基于曲线演化、Mumford-Shah(1989)用于分割和水平集的函数。我们的模型可以检测边界不一定由梯度定义的目标。我们最小化一个能量,这个能量可以看作是最小划分问题的一个特例。在水平集公式中,问题变成了一个“平均曲率流”类似的主动轮廓演化,它将在所需的边界上停止。然而,停止项并不依赖于图像的梯度,如在经典的主动轮廓模型中,而是与图像的特定分割有关。我们使用有限差分法给出了一个数值算法。最后,我们给出了各种实验结果,特别是一些经典的基于梯度的蛇形方法不适用的例子。此外,初始曲线可以在图像中的任意位置,并且内部轮廓会自动检测到。