Suppr超能文献

原始心脏形成区域的动态位置命运图谱。

Dynamic positional fate map of the primary heart-forming region.

作者信息

Cui Cheng, Cheuvront Tracey J, Lansford Rusty D, Moreno-Rodriguez Ricardo A, Schultheiss Thomas M, Rongish Brenda J

机构信息

Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.

出版信息

Dev Biol. 2009 Aug 15;332(2):212-22. doi: 10.1016/j.ydbio.2009.05.570. Epub 2009 Jun 2.

Abstract

Here we show the temporal-spatial orchestration of early heart morphogenesis at cellular level resolution, in vivo, and reconcile conflicting positional fate mapping data regarding the primary heart-forming field(s). We determined the positional fates of precardiac cells using a precision electroporation approach in combination with wide-field time-lapse microscopy in the quail embryo, a warm-blooded vertebrate (HH Stages 4 through 10). Contrary to previous studies, the results demonstrate the existence of a "continuous" circle-shaped heart field that spans the midline, appearing at HH Stage 4, which then expands to form a wide arc of progenitors at HH Stages 5-7. Our time-resolved image data show that a subset of these cardiac progenitor cells do not overlap with the expression of common cardiogenic factors, Nkx-2.5 and Bmp-2, until HH Stage 10, when a tubular heart has formed, calling into question when cardiac fate is specified and by which key factors. Sub-groups and anatomical bands (cohorts) of heart precursor cells dramatically change their relative positions in a process largely driven by endodermal folding and other large-scale tissue deformations. Thus, our novel dynamic positional fate maps resolve the origin of cardiac progenitor cells in amniotes. The data also establish the concept that tissue motion contributes significantly to cellular position fate - i.e., much of the cellular displacement that occurs during assembly of a midline heart tube (HH Stage 9) is NOT due to "migration" (autonomous motility), a commonly held belief. Computational analysis of our time-resolved data lays the foundation for more precise analyses of how cardiac gene regulatory networks correlate with early heart tissue morphogenesis in birds and mammals.

摘要

在这里,我们展示了早期心脏形态发生在细胞水平分辨率下的时空编排,这是在体内进行的,并且调和了关于主要心脏形成区域的相互矛盾的位置命运图谱数据。我们在鹌鹑胚胎(一种温血脊椎动物,处于HH阶段4至10)中,使用精确电穿孔方法结合宽场延时显微镜,确定了心脏前体细胞的位置命运。与先前的研究相反,结果表明存在一个跨越中线的“连续”圆形心脏场,它在HH阶段4出现,然后在HH阶段5 - 7扩展形成一个宽的祖细胞弧。我们的时间分辨图像数据显示,这些心脏祖细胞的一个子集直到HH阶段10(此时管状心脏已形成)才与常见的心脏发生因子Nkx - 2.5和Bmp - 2的表达重叠,这使得心脏命运是何时被指定以及由哪些关键因子指定产生了疑问。心脏前体细胞的亚群和解剖带(群组)在很大程度上由内胚层折叠和其他大规模组织变形驱动的过程中,显著改变了它们的相对位置。因此,我们新颖的动态位置命运图谱解析了羊膜动物中心脏祖细胞的起源。这些数据还确立了组织运动对细胞位置命运有重大贡献的概念——即,在中线心脏管组装(HH阶段9)期间发生的许多细胞位移并非如普遍认为的那样是由于“迁移”(自主运动性)。对我们时间分辨数据的计算分析为更精确地分析心脏基因调控网络如何与鸟类和哺乳动物早期心脏组织形态发生相关联奠定了基础。

相似文献

1
Dynamic positional fate map of the primary heart-forming region.
Dev Biol. 2009 Aug 15;332(2):212-22. doi: 10.1016/j.ydbio.2009.05.570. Epub 2009 Jun 2.
2
Lack of regulation in the heart forming region of avian embryos.
Dev Biol. 1999 Mar 1;207(1):163-75. doi: 10.1006/dbio.1998.9167.
3
Fate map of early avian cardiac progenitor cells.
Development. 2001 Jun;128(12):2269-79. doi: 10.1242/dev.128.12.2269.
4
Requirement of a novel gene, Xin, in cardiac morphogenesis.
Development. 1999 Mar;126(6):1281-94. doi: 10.1242/dev.126.6.1281.
5
Hedgehog and RAS pathways cooperate in the anterior-posterior specification and positioning of cardiac progenitor cells.
Dev Biol. 2006 Feb 15;290(2):373-85. doi: 10.1016/j.ydbio.2005.11.033. Epub 2006 Jan 4.
6
Elevated expression of Nkx-2.5 in developing myocardial conduction cells.
Anat Rec. 2001 Jul 1;263(3):307-13. doi: 10.1002/ar.1106.
10
A digital image-based method for computational tissue fate mapping during early avian morphogenesis.
Ann Biomed Eng. 2005 Jun;33(6):854-65. doi: 10.1007/s10439-005-3037-7.

引用本文的文献

2
Live Cell Imaging of Bone Cell and Organ Cultures.
Methods Mol Biol. 2025;2885:479-518. doi: 10.1007/978-1-0716-4306-8_25.
5
Elongation of the nascent avian foregut requires coordination of intrinsic and extrinsic cell behaviors.
bioRxiv. 2024 Nov 1:2024.10.31.621372. doi: 10.1101/2024.10.31.621372.
7
Quantifying endodermal strains during heart tube formation in the developing chicken embryo.
J Biomech. 2023 Mar;149:111481. doi: 10.1016/j.jbiomech.2023.111481. Epub 2023 Feb 4.
8
Graded mesoderm assembly governs cell fate and morphogenesis of the early mammalian heart.
Cell. 2023 Feb 2;186(3):479-496.e23. doi: 10.1016/j.cell.2023.01.001.
9
The myocardium utilizes Pdgfra-PI3K signaling to steer towards the midline during heart tube formation.
bioRxiv. 2023 Jan 3:2023.01.03.522612. doi: 10.1101/2023.01.03.522612.
10
Dissecting the Complexity of Early Heart Progenitor Cells.
J Cardiovasc Dev Dis. 2021 Dec 26;9(1):5. doi: 10.3390/jcdd9010005.

本文引用的文献

2
The ECM moves during primitive streak formation--computation of ECM versus cellular motion.
PLoS Biol. 2008 Oct 14;6(10):e247. doi: 10.1371/journal.pbio.0060247.
3
Patterning of the heart field in the chick.
Dev Biol. 2008 Jul 15;319(2):223-33. doi: 10.1016/j.ydbio.2008.04.014. Epub 2008 Apr 23.
5
Islet1 cardiovascular progenitors: a single source for heart lineages?
Development. 2008 Jan;135(2):193-205. doi: 10.1242/dev.001883.
6
The heart-forming fields: one or multiple?
Philos Trans R Soc Lond B Biol Sci. 2007 Aug 29;362(1484):1257-65. doi: 10.1098/rstb.2007.2113.
7
Endocardium is necessary for cardiomyocyte movement during heart tube assembly.
Development. 2007 Jun;134(12):2379-86. doi: 10.1242/dev.02857.
8
Heart field: from mesoderm to heart tube.
Annu Rev Cell Dev Biol. 2007;23:45-68. doi: 10.1146/annurev.cellbio.23.090506.123331.
9
Mesodermal cell displacements during avian gastrulation are due to both individual cell-autonomous and convective tissue movements.
Proc Natl Acad Sci U S A. 2006 Dec 26;103(52):19806-11. doi: 10.1073/pnas.0606100103. Epub 2006 Dec 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验