Tinker M, Lee J-B
Opt Express. 2005 Sep 5;13(18):7174-88. doi: 10.1364/opex.13.007174.
Ultra-compact device geometries requiring the development of new device technologies are essential for the successful implementation of active devices within photonic crystal systems. The basic operation of an ultra-compact silicon-based photonic crystal light modulator actuated by the thermo-optic modulation of the cut-off frequency about the telecommunication wavelength is discussed. A device design using highly localized high temperature resistive heating of heavily doped heating elements situated directly parallel to the photonic crystal light modulator was developed and evaluated using finite difference time domain and finite element analysis. These devices exhibited high extinction ratios and low insertion losses over a 40 nm frequency band around the telecommunication wavelength of 1550 nm with response times on the order of a few to several microseconds. The reliability implications of using these types of devices are discussed.