Suppr超能文献

cDNA微阵列研究中基因表达比率测量的正误情况。

Hits and misses from gene expression ratio measurements in cDNA microarray studies.

作者信息

Iacobas Dumitru A, Massimi Aldo B, Urban Marcia, Iacobas Sanda, Spray David C

机构信息

Department of Neuroscience, Molecular Biology Core, Kennedy Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA.

出版信息

J Biomol Tech. 2002 Sep;13(3):143-57.

Abstract

DNA microarray users face many challenges to obtain accurate results, including complex technical errors, natural variability of biological systems, imperfect reproducibility of reference standards, and difficulties in acquisition and processing of large amounts of data. Therefore, investigators should be aware of potential sources of variability and account for them in the experimental design and execution. This work reports our experience in identifying factors that alter the reliability of the results and in diminishing effects of these factors. We have studied the hybridization reproducibility in cDNA microarray chips, both as absolute values and expression ratios, and the nature and impact of several technical, acquisition, and processing errors. A new experimental strategy is proposed and mathematical algorithms developed that efficiently correct the errors and thereby increase the information obtainable through microarray studies. These algorithms reduced the variability not associated with biological system to less than a quarter of its initial value and have substantially enhanced reliability in experiments on brain and cultured neuroblastoma cells.

摘要

DNA微阵列用户在获得准确结果上面临诸多挑战,包括复杂的技术错误、生物系统的自然变异性、参考标准的不完美再现性以及大量数据采集和处理方面的困难。因此,研究人员应意识到变异性的潜在来源,并在实验设计和执行中加以考虑。这项工作报告了我们在识别改变结果可靠性的因素以及减少这些因素影响方面的经验。我们研究了cDNA微阵列芯片中的杂交再现性,包括绝对值和表达比率,以及几种技术、采集和处理错误的性质和影响。提出了一种新的实验策略并开发了数学算法,这些算法能有效校正错误,从而增加通过微阵列研究可获得的信息。这些算法将与生物系统无关的变异性降低到其初始值的四分之一以下,并显著提高了在大脑和培养的神经母细胞瘤细胞实验中的可靠性。

相似文献

3
Automation of cDNA microarray hybridization and washing yields improved data quality.
J Biochem Biophys Methods. 2005 Jul 29;64(1):69-75. doi: 10.1016/j.jbbm.2005.06.002.
6
A statistical framework for the design of microarray experiments and effective detection of differential gene expression.
Bioinformatics. 2004 Nov 1;20(16):2821-8. doi: 10.1093/bioinformatics/bth336. Epub 2004 Jun 4.
8
Quantitative quality control in microarray image processing and data acquisition.
Nucleic Acids Res. 2001 Aug 1;29(15):E75-5. doi: 10.1093/nar/29.15.e75.
9
Quantitative assessment of the importance of dye switching and biological replication in cDNA microarray studies.
Physiol Genomics. 2003 Aug 15;14(3):199-207. doi: 10.1152/physiolgenomics.00143.2002.

引用本文的文献

1
Connexin43 and the brain transcriptome of newborn mice.
Genomics. 2007 Jan;89(1):113-23. doi: 10.1016/j.ygeno.2006.09.007. Epub 2006 Oct 24.
2
Array analysis of gene expression in connexin-43 null astrocytes.
Physiol Genomics. 2003 Nov 11;15(3):177-90. doi: 10.1152/physiolgenomics.00062.2003.

本文引用的文献

2
New protocol in spotting microarray technique.
Rom J Physiol. 2000 Jan-Dec;37(1-4):69-80.
3
A compendium of gene expression in normal human tissues.
Physiol Genomics. 2001 Dec 21;7(2):97-104. doi: 10.1152/physiolgenomics.00040.2001.
4
Further defining housekeeping, or "maintenance," genes Focus on "A compendium of gene expression in normal human tissues".
Physiol Genomics. 2001 Dec 21;7(2):95-6. doi: 10.1152/physiolgenomics.2001.7.2.95.
5
Sources of nonlinearity in cDNA microarray expression measurements.
Genome Biol. 2001;2(11):RESEARCH0047. doi: 10.1186/gb-2001-2-11-research0047. Epub 2001 Oct 18.
6
Project normal: defining normal variance in mouse gene expression.
Proc Natl Acad Sci U S A. 2001 Nov 6;98(23):13266-71. doi: 10.1073/pnas.221465998.
7
Gene expression following acute morphine administration.
Physiol Genomics. 2001 Aug 28;6(3):169-81. doi: 10.1152/physiolgenomics.2001.6.3.169.
8
Bootstrapping cluster analysis: assessing the reliability of conclusions from microarray experiments.
Proc Natl Acad Sci U S A. 2001 Jul 31;98(16):8961-5. doi: 10.1073/pnas.161273698. Epub 2001 Jul 24.
9
Analysis of variance for gene expression microarray data.
J Comput Biol. 2000;7(6):819-37. doi: 10.1089/10665270050514954.
10
Confocal scanning of genetic microarrays.
Methods Mol Biol. 2001;170:237-46. doi: 10.1385/1-59259-234-1:237.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验