Suppr超能文献

原绿球藻中计时机制的生化证据。

Biochemical evidence for a timing mechanism in prochlorococcus.

作者信息

Axmann Ilka M, Dühring Ulf, Seeliger Luiza, Arnold Anne, Vanselow Jens T, Kramer Achim, Wilde Annegret

机构信息

Institute for Theoretical Biology, Humboldt University, Berlin, Germany.

出版信息

J Bacteriol. 2009 Sep;191(17):5342-7. doi: 10.1128/JB.00419-09. Epub 2009 Jun 5.

Abstract

Organisms coordinate biological activities into daily cycles using an internal circadian clock. The circadian oscillator proteins KaiA, KaiB, and KaiC are widely believed to underlie 24-h oscillations of gene expression in cyanobacteria. However, a group of very abundant cyanobacteria, namely, marine Prochlorococcus species, lost the third oscillator component, KaiA, during evolution. We demonstrate here that the remaining Kai proteins fulfill their known biochemical functions, although KaiC is hyperphosphorylated by default in this system. These data provide biochemical support for the observed evolutionary reduction of the clock locus in Prochlorococcus and are consistent with a model in which a mechanism that is less robust than the well-characterized KaiABC protein clock of Synechococcus is sufficient for biological timing in the very stable environment that Prochlorococcus inhabits.

摘要

生物体利用内部生物钟将生物活动协调成日常周期。昼夜节律振荡器蛋白KaiA、KaiB和KaiC被广泛认为是蓝藻中基因表达24小时振荡的基础。然而,一组非常丰富的蓝藻,即海洋原绿球藻属物种,在进化过程中失去了第三个振荡器成分KaiA。我们在此证明,尽管在该系统中KaiC默认情况下会过度磷酸化,但其余的Kai蛋白仍能履行其已知的生化功能。这些数据为观察到的原绿球藻生物钟位点的进化减少提供了生化支持,并且与一个模型一致,即在原绿球藻所栖息的非常稳定的环境中,一种不如集胞藻中特征明确的KaiABC蛋白生物钟强大的机制足以进行生物计时。

相似文献

1
Biochemical evidence for a timing mechanism in prochlorococcus.
J Bacteriol. 2009 Sep;191(17):5342-7. doi: 10.1128/JB.00419-09. Epub 2009 Jun 5.
2
Diversity of KaiC-based timing systems in marine Cyanobacteria.
Mar Genomics. 2014 Apr;14:3-16. doi: 10.1016/j.margen.2013.12.006. Epub 2014 Jan 3.
3
The Kai-Protein Clock-Keeping Track of Cyanobacteria's Daily Life.
Subcell Biochem. 2019;93:359-391. doi: 10.1007/978-3-030-28151-9_12.
4
Physical interactions among circadian clock proteins KaiA, KaiB and KaiC in cyanobacteria.
EMBO J. 1999 Mar 1;18(5):1137-45. doi: 10.1093/emboj/18.5.1137.
6
Cooperative KaiA-KaiB-KaiC interactions affect KaiB/SasA competition in the circadian clock of cyanobacteria.
J Mol Biol. 2014 Jan 23;426(2):389-402. doi: 10.1016/j.jmb.2013.09.040. Epub 2013 Oct 7.
7
In vitro regulation of circadian phosphorylation rhythm of cyanobacterial clock protein KaiC by KaiA and KaiB.
FEBS Lett. 2010 Mar 5;584(5):898-902. doi: 10.1016/j.febslet.2010.01.016. Epub 2010 Jan 16.
8
Biochemical analysis of three putative KaiC clock proteins from Synechocystis sp. PCC 6803 suggests their functional divergence.
Microbiology (Reading). 2013 May;159(Pt 5):948-958. doi: 10.1099/mic.0.065425-0. Epub 2013 Feb 28.
9
Intermolecular associations determine the dynamics of the circadian KaiABC oscillator.
Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14805-10. doi: 10.1073/pnas.1002119107. Epub 2010 Aug 2.
10
Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria.
Science. 1998 Sep 4;281(5382):1519-23. doi: 10.1126/science.281.5382.1519.

引用本文的文献

1
Ecosystem relocation on Snowball Earth: Polar-alpine ancestry of the extant surface biosphere?
Proc Natl Acad Sci U S A. 2025 May 20;122(20):e2414059122. doi: 10.1073/pnas.2414059122. Epub 2025 May 5.
2
Reconstruction of the ancient cyanobacterial proto-circadian clock system KaiABC.
EMBO J. 2025 May;44(10):3025-3046. doi: 10.1038/s44318-025-00425-0. Epub 2025 Apr 10.
3
Emergence of metabolic coupling to the heterotroph promotes dark survival in .
ISME Commun. 2024 Oct 29;4(1):ycae131. doi: 10.1093/ismeco/ycae131. eCollection 2024 Jan.
4
Two KaiABC systems control circadian oscillations in one cyanobacterium.
Nat Commun. 2024 Sep 3;15(1):7674. doi: 10.1038/s41467-024-51914-5.
7
Microbial circadian clocks: host-microbe interplay in diel cycles.
BMC Microbiol. 2023 May 9;23(1):124. doi: 10.1186/s12866-023-02839-4.
8
Transcriptional Mechanisms of Thermal Acclimation in .
mBio. 2023 Jun 27;14(3):e0342522. doi: 10.1128/mbio.03425-22. Epub 2023 Apr 13.
9
Damped Oscillating Phosphoryl Transfer Reaction in the Cyanobacterial Circadian Clock.
ACS Omega. 2023 Mar 14;8(12):10784-10788. doi: 10.1021/acsomega.2c06457. eCollection 2023 Mar 28.
10
From primordial clocks to circadian oscillators.
Nature. 2023 Apr;616(7955):183-189. doi: 10.1038/s41586-023-05836-9. Epub 2023 Mar 22.

本文引用的文献

1
How a cyanobacterium tells time.
Curr Opin Microbiol. 2008 Dec;11(6):541-6. doi: 10.1016/j.mib.2008.10.003. Epub 2008 Nov 10.
2
The day/night switch in KaiC, a central oscillator component of the circadian clock of cyanobacteria.
Proc Natl Acad Sci U S A. 2008 Sep 2;105(35):12825-30. doi: 10.1073/pnas.0800526105. Epub 2008 Aug 26.
4
Dual KaiC-based oscillations constitute the circadian system of cyanobacteria.
Genes Dev. 2008 Jun 1;22(11):1513-21. doi: 10.1101/gad.1661808. Epub 2008 May 13.
5
Regulation of circadian clock gene expression by phosphorylation states of KaiC in cyanobacteria.
J Bacteriol. 2008 Mar;190(5):1691-8. doi: 10.1128/JB.01693-07. Epub 2007 Dec 28.
6
Patterns and implications of gene gain and loss in the evolution of Prochlorococcus.
PLoS Genet. 2007 Dec;3(12):e231. doi: 10.1371/journal.pgen.0030231.
7
Ordered phosphorylation governs oscillation of a three-protein circadian clock.
Science. 2007 Nov 2;318(5851):809-12. doi: 10.1126/science.1148596. Epub 2007 Oct 4.
8
ATPase activity of KaiC determines the basic timing for circadian clock of cyanobacteria.
Proc Natl Acad Sci U S A. 2007 Oct 9;104(41):16377-81. doi: 10.1073/pnas.0706292104. Epub 2007 Sep 27.
9
Growth of prochlorococcus, a photosynthetic prokaryote, in the equatorial pacific ocean.
Science. 1995 Jun 9;268(5216):1480-2. doi: 10.1126/science.268.5216.1480.
10
Comprehensive phosphorylation site analysis of individual phosphoproteins applying scoring schemes for MS/MS data.
Anal Chem. 2007 Oct 1;79(19):7439-49. doi: 10.1021/ac0707784. Epub 2007 Aug 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验