Kettler Gregory C, Martiny Adam C, Huang Katherine, Zucker Jeremy, Coleman Maureen L, Rodrigue Sebastien, Chen Feng, Lapidus Alla, Ferriera Steven, Johnson Justin, Steglich Claudia, Church George M, Richardson Paul, Chisholm Sallie W
Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
PLoS Genet. 2007 Dec;3(12):e231. doi: 10.1371/journal.pgen.0030231.
Prochlorococcus is a marine cyanobacterium that numerically dominates the mid-latitude oceans and is the smallest known oxygenic phototroph. Numerous isolates from diverse areas of the world's oceans have been studied and shown to be physiologically and genetically distinct. All isolates described thus far can be assigned to either a tightly clustered high-light (HL)-adapted clade, or a more divergent low-light (LL)-adapted group. The 16S rRNA sequences of the entire Prochlorococcus group differ by at most 3%, and the four initially published genomes revealed patterns of genetic differentiation that help explain physiological differences among the isolates. Here we describe the genomes of eight newly sequenced isolates and combine them with the first four genomes for a comprehensive analysis of the core (shared by all isolates) and flexible genes of the Prochlorococcus group, and the patterns of loss and gain of the flexible genes over the course of evolution. There are 1,273 genes that represent the core shared by all 12 genomes. They are apparently sufficient, according to metabolic reconstruction, to encode a functional cell. We describe a phylogeny for all 12 isolates by subjecting their complete proteomes to three different phylogenetic analyses. For each non-core gene, we used a maximum parsimony method to estimate which ancestor likely first acquired or lost each gene. Many of the genetic differences among isolates, especially for genes involved in outer membrane synthesis and nutrient transport, are found within the same clade. Nevertheless, we identified some genes defining HL and LL ecotypes, and clades within these broad ecotypes, helping to demonstrate the basis of HL and LL adaptations in Prochlorococcus. Furthermore, our estimates of gene gain events allow us to identify highly variable genomic islands that are not apparent through simple pairwise comparisons. These results emphasize the functional roles, especially those connected to outer membrane synthesis and transport that dominate the flexible genome and set it apart from the core. Besides identifying islands and demonstrating their role throughout the history of Prochlorococcus, reconstruction of past gene gains and losses shows that much of the variability exists at the "leaves of the tree," between the most closely related strains. Finally, the identification of core and flexible genes from this 12-genome comparison is largely consistent with the relative frequency of Prochlorococcus genes found in global ocean metagenomic databases, further closing the gap between our understanding of these organisms in the lab and the wild.
原绿球藻是一种海洋蓝细菌,在中纬度海洋中数量占主导地位,是已知最小的产氧光合自养生物。对从世界海洋不同区域分离出的众多菌株进行了研究,结果表明它们在生理和遗传方面存在差异。迄今为止所描述的所有分离株都可归为紧密聚类的适应高光(HL)的进化枝,或更为多样化的适应低光(LL)的类群。整个原绿球藻群体的16S rRNA序列差异最多为3%,最初公布的四个基因组揭示了遗传分化模式,有助于解释分离株之间的生理差异。在此,我们描述了八个新测序分离株的基因组,并将它们与最初的四个基因组相结合,以全面分析原绿球藻群体的核心基因(所有分离株共有的)和可变基因,以及可变基因在进化过程中的得失模式。有1273个基因代表了所有12个基因组共有的核心基因。根据代谢重建,这些基因显然足以编码一个功能完整的细胞。我们通过对所有12个分离株的完整蛋白质组进行三种不同的系统发育分析,描述了它们的系统发育。对于每个非核心基因,我们使用最大简约法来估计哪个祖先可能首先获得或失去了每个基因。分离株之间的许多遗传差异,特别是那些参与外膜合成和营养物质运输的基因差异,在同一进化枝内被发现。然而,我们鉴定出了一些定义高光和低光生态型以及这些广泛生态型内进化枝的基因,这有助于揭示原绿球藻中高光和低光适应的基础。此外,我们对基因获得事件的估计使我们能够识别出通过简单的两两比较不明显的高度可变的基因组岛。这些结果强调了功能作用,特别是那些与外膜合成和运输相关的作用,它们在可变基因组中占主导地位,并使其与核心基因组区分开来。除了识别基因组岛并展示它们在原绿球藻整个历史中的作用外,对过去基因得失的重建表明,大部分变异性存在于“树的叶子”上,即在关系最密切的菌株之间。最后,从这12个基因组比较中鉴定出的核心基因和可变基因在很大程度上与全球海洋宏基因组数据库中发现的原绿球藻基因的相对频率一致,进一步缩小了我们在实验室和野外对这些生物的理解之间的差距。