Maitani Masato M, Daniel Thomas A, Cabarcos Orlando M, Allara David L
Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA.
J Am Chem Soc. 2009 Jun 17;131(23):8016-29. doi: 10.1021/ja901376w.
Al atom deposition with controlled coverages has been carried out on self-assembled monolayers (SAMs), prepared by assembly of HS(CH(2))(15)X, with X = -CH(3) (M-SAM) and -CO(2)CH(3) (ME-SAM), on Au {111} substrates, and the resulting structures and electrical properties analyzed in situ by ultrahigh-vacuum, multiple mode atomic force microscopy (contact, noncontact, and conducting probe) and infrared reflection spectroscopy. The M-SAM data clearly reveal a distinct morphology transition at approximately 3 Al atoms per adsorbate molecule (3 EL) from formation of a buried approximately 1:1 Al-Au adlayer at low coverages to metal overlayer cluster nucleation and the appearance of isolated metal nanofilaments with varied behaviors including Ohmic conduction, resistive switching (memristor), and vestiges of quantum-like conductance steps. The ME-SAM data confirm our earlier report of a highly efficient, 1:1 chemical trapping of initial nascent Al atoms by the terminal ester group while also revealing formation of isolated, conducting filaments, mainly at SAM defects, and the presence of an insulating overlayer up to approximately 5 EL. For both SAMs, despite the large thermochemical driving forces to exhaustively form inorganic products, subtle kinetic pathways guide the evolution of metal nanostructures within and contiguous to the SAM. Overall the experiments demonstrate a highly controlled, quantitative strategy for exploring the chemistry of nascent metal atoms with organic moieties as well as providing opportunities to generate novel metal nanostructures with significant implications for molecular and organic device applications.
已在通过 HS(CH₂)₁₅X(X = -CH₃ 即 M-SAM,X = -CO₂CH₃ 即 ME-SAM)组装制备的自组装单分子层(SAMs)上进行了具有可控覆盖度的 Al 原子沉积,这些自组装单分子层位于 Au{111}衬底上,并通过超高真空、多模式原子力显微镜(接触模式、非接触模式和导电探针模式)和红外反射光谱对所得结构和电学性质进行了原位分析。M-SAM 数据清楚地揭示了在每个吸附分子约 3 个 Al 原子(3 当量)时明显的形态转变,从低覆盖度下形成埋藏的约 1:1 Al-Au 吸附层到金属覆盖层簇的成核以及出现具有包括欧姆传导、电阻开关(忆阻器)和类量子电导台阶痕迹等不同行为的孤立金属纳米丝。ME-SAM 数据证实了我们之前关于末端酯基对初始新生 Al 原子进行高效 1:1 化学捕获的报道,同时还揭示了主要在 SAM 缺陷处形成孤立的导电丝,以及存在高达约 5 当量的绝缘覆盖层。对于这两种 SAMs,尽管存在形成无机产物的巨大热化学驱动力,但微妙的动力学途径引导着 SAM 内部及与之相邻的金属纳米结构的演化。总体而言,这些实验展示了一种高度可控的定量策略,用于探索新生金属原子与有机部分的化学反应,同时也为生成对分子和有机器件应用具有重要意义的新型金属纳米结构提供了机会。