Suppr超能文献

石墨烯升华及多层边缘重构的原位观察

In situ observation of graphene sublimation and multi-layer edge reconstructions.

作者信息

Huang Jian Yu, Ding Feng, Yakobson Boris I, Lu Ping, Qi Liang, Li Ju

机构信息

Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM 87185, USA.

出版信息

Proc Natl Acad Sci U S A. 2009 Jun 23;106(25):10103-8. doi: 10.1073/pnas.0905193106. Epub 2009 Jun 10.

Abstract

We induced sublimation of suspended few-layer graphene by in situ Joule-heating inside a transmission electron microscope. The graphene sublimation fronts consisted of mostly {1100} zigzag edges. Under appropriate conditions, a fractal-like "coastline" morphology was observed. Extensive multiple-layer reconstructions at the graphene edges led to the formation of unique carbon nanostructures, such as sp(2)-bonded bilayer edges (BLEs) and nanotubes connected to BLEs. Flat fullerenes/nanopods and nanotubes tunneling multiple layers of graphene sheets were also observed. Remarkably, >99% of the graphene edges observed during sublimation are BLEs rather than monolayer edges (MLEs), indicating that BLEs are the stable edges in graphene at high temperatures. We reproduced the "coastline" sublimation morphologies by kinetic Monte Carlo (kMC) simulations. The simulation revealed geometrical and topological features unique to quasi-2-dimensional (2D) graphene sublimation and reconstructions. These reconstructions were enabled by bending, which cannot occur in first-order phase transformations of 3D bulk materials. These results indicate that substrate of multiple-layer graphene can offer unique opportunities for tailoring carbon-based nanostructures and engineering novel nano-devices with complex topologies.

摘要

我们通过在透射电子显微镜内原位焦耳加热诱导悬浮的少层石墨烯升华。石墨烯升华前沿主要由{1100}锯齿形边缘组成。在适当条件下,观察到一种类似分形的“海岸线”形态。石墨烯边缘广泛的多层重构导致形成独特的碳纳米结构,例如sp(2)键合的双层边缘(BLEs)以及连接到BLEs的纳米管。还观察到扁平富勒烯/纳米豆荚以及贯穿多层石墨烯片的纳米管。值得注意的是,升华过程中观察到的>99%的石墨烯边缘是BLEs而非单层边缘(MLEs),这表明BLEs是高温下石墨烯中的稳定边缘。我们通过动力学蒙特卡罗(kMC)模拟重现了“海岸线”升华形态。模拟揭示了准二维(2D)石墨烯升华和重构所特有的几何和拓扑特征。这些重构是由弯曲实现的,而弯曲在三维块状材料的一级相变中不会发生。这些结果表明,多层石墨烯衬底可为定制碳基纳米结构以及设计具有复杂拓扑结构的新型纳米器件提供独特机遇。

相似文献

1
In situ observation of graphene sublimation and multi-layer edge reconstructions.
Proc Natl Acad Sci U S A. 2009 Jun 23;106(25):10103-8. doi: 10.1073/pnas.0905193106. Epub 2009 Jun 10.
2
Electronic transport of recrystallized freestanding graphene nanoribbons.
ACS Nano. 2015;9(4):3510-20. doi: 10.1021/nn507452g. Epub 2015 Mar 9.
3
Shaping and Edge Engineering of Few-Layered Freestanding Graphene Sheets in a Transmission Electron Microscope.
Nano Lett. 2020 Apr 8;20(4):2279-2287. doi: 10.1021/acs.nanolett.9b04524. Epub 2019 Dec 20.
4
Spontaneous curling of graphene sheets with reconstructed edges.
ACS Nano. 2010 Aug 24;4(8):4840-4. doi: 10.1021/nn100842k.
5
Graphene edges and beyond: temperature-driven structures and electromagnetic properties.
ACS Nano. 2015 May 26;9(5):4669-74. doi: 10.1021/acsnano.5b02617.
6
Structural transformations in graphene studied with high spatial and temporal resolution.
Nat Nanotechnol. 2009 Aug;4(8):500-4. doi: 10.1038/nnano.2009.194. Epub 2009 Aug 2.
7
Formation of Klein Edge Doublets from Graphene Monolayers.
ACS Nano. 2015 Sep 22;9(9):8916-22. doi: 10.1021/acsnano.5b02730. Epub 2015 Aug 26.
8
Semiconducting edges and flake-shape evolution of monolayer GaSe: role of edge reconstructions.
Nanoscale. 2018 Jul 5;10(25):12133-12140. doi: 10.1039/c8nr03433h.
9
Localized edge vibrations and edge reconstruction by joule heating in graphene nanostructures.
Phys Rev Lett. 2010 Jan 22;104(3):036807. doi: 10.1103/PhysRevLett.104.036807.

引用本文的文献

1
Towards graphene-based asymmetric diodes: a density functional tight-binding study.
Nanoscale Adv. 2024 Feb 19;6(5):1548-1555. doi: 10.1039/d3na00603d. eCollection 2024 Feb 27.
2
Selective Sensing of DNA Nucleobases with Angular Discrimination.
ACS Omega. 2024 Jan 10;9(3):3240-3249. doi: 10.1021/acsomega.3c04945. eCollection 2024 Jan 23.
3
Thermal Stability and Sublimation of Two-Dimensional CoSe Nanosheets for Ultrathin and Flexible Nanoelectronic Devices.
ACS Appl Nano Mater. 2023 Feb 6;6(4):2421-2428. doi: 10.1021/acsanm.2c04640. eCollection 2023 Feb 24.
4
Nanocrystalline graphene at high temperatures: insight into nanoscale processes.
Nanoscale Adv. 2019 Apr 23;1(7):2485-2494. doi: 10.1039/c9na00055k. eCollection 2019 Jul 10.
5
The Mo catalyzed graphitization of amorphous carbon: an TEM study.
RSC Adv. 2019 Oct 24;9(59):34377-34381. doi: 10.1039/c9ra05936a. eCollection 2019 Oct 23.
6
The closed-edge structure of graphite and the effect of electrostatic charging.
RSC Adv. 2020 Feb 24;10(13):7994-8001. doi: 10.1039/c9ra09913a. eCollection 2020 Feb 18.
7
9
Direct observation of the formation and stabilization of metallic nanoparticles on carbon supports.
Nat Commun. 2020 Dec 11;11(1):6373. doi: 10.1038/s41467-020-20084-5.
10
Optical Patterning of Two-Dimensional Materials.
Research (Wash D C). 2020 Jan 27;2020:6581250. doi: 10.34133/2020/6581250. eCollection 2020.

本文引用的文献

1
Graphene at the edge: stability and dynamics.
Science. 2009 Mar 27;323(5922):1705-8. doi: 10.1126/science.1166999.
2
Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons.
Science. 2009 Mar 27;323(5922):1701-5. doi: 10.1126/science.1166862.
3
Open and closed edges of graphene layers.
Phys Rev Lett. 2009 Jan 9;102(1):015501. doi: 10.1103/PhysRevLett.102.015501. Epub 2009 Jan 5.
4
Edge-stress-induced warping of graphene sheets and nanoribbons.
Phys Rev Lett. 2008 Dec 12;101(24):245501. doi: 10.1103/PhysRevLett.101.245501.
5
Metal atom catalyzed enlargement of fullerenes.
Phys Rev Lett. 2008 Oct 24;101(17):176102. doi: 10.1103/PhysRevLett.101.176102. Epub 2008 Oct 22.
6
Free-standing graphene at atomic resolution.
Nat Nanotechnol. 2008 Nov;3(11):676-81. doi: 10.1038/nnano.2008.280. Epub 2008 Sep 28.
7
Self-passivating edge reconstructions of graphene.
Phys Rev Lett. 2008 Sep 12;101(11):115502. doi: 10.1103/PhysRevLett.101.115502. Epub 2008 Sep 10.
8
Plumbing carbon nanotubes.
Nat Nanotechnol. 2008 Jan;3(1):17-21. doi: 10.1038/nnano.2007.406. Epub 2007 Dec 9.
9
Measurement of the elastic properties and intrinsic strength of monolayer graphene.
Science. 2008 Jul 18;321(5887):385-8. doi: 10.1126/science.1157996.
10
Dislocation dynamics in multiwalled carbon nanotubes at high temperatures.
Phys Rev Lett. 2008 Jan 25;100(3):035503. doi: 10.1103/PhysRevLett.100.035503. Epub 2008 Jan 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验