Foard E M, Wagner A J
Department of Physics, North Dakota State University, Fargo, North Dakota 58108, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 May;79(5 Pt 2):056710. doi: 10.1103/PhysRevE.79.056710. Epub 2009 May 26.
Phase-separation fronts leave in their wakes morphologies that are substantially different from the morphologies formed in homogeneous phase separation. In this paper we focus on fronts in binary mixtures that are enslaved phase-separation fronts, i.e., fronts that follow in the wake of a control-parameter front. In the one-dimensional case, which is the focus of this paper, the formed morphology is deceptively simple: alternating domains of a regular size. However, determining the size of these domains as a function of the front speed and other system parameters is a nontrivial problem. We present an analytical solution for the case where no material is deposited ahead of the front and numerical solutions and scaling arguments for more general cases. Through these enslaved phase-separation fronts large domains can be formed that are practically unattainable in homogeneous one-dimensional phase separation.
相分离前沿在其后留下的形态与均匀相分离中形成的形态有很大不同。在本文中,我们关注二元混合物中的前沿,即受奴役的相分离前沿,也就是跟随控制参数前沿之后的前沿。在本文重点研究的一维情况下,形成的形态看似简单:具有规则尺寸的交替区域。然而,确定这些区域的尺寸作为前沿速度和其他系统参数的函数是一个 nontrivial 问题。我们给出了前沿前方没有物质沉积情况下的解析解,以及更一般情况下的数值解和标度论证。通过这些受奴役的相分离前沿,可以形成在均匀一维相分离中几乎无法实现的大区域。