Suppr超能文献

城市土壤中 Pb 浓度的异常值识别和可视化及其对潜在污染土地识别的意义。

Outlier identification and visualization for Pb concentrations in urban soils and its implications for identification of potential contaminated land.

机构信息

School of Geography and Archaeology, National University of Ireland, Galway, Ireland.

出版信息

Environ Pollut. 2009 Nov;157(11):3083-90. doi: 10.1016/j.envpol.2009.05.044. Epub 2009 Jun 13.

Abstract

Outliers in urban soil geochemical databases may imply potential contaminated land. Different methodologies which can be easily implemented for the identification of global and spatial outliers were applied for Pb concentrations in urban soils of Galway City in Ireland. Due to its strongly skewed probability feature, a Box-Cox transformation was performed prior to further analyses. The graphic methods of histogram and box-and-whisker plot were effective in identification of global outliers at the original scale of the dataset. Spatial outliers could be identified by a local indicator of spatial association of local Moran's I, cross-validation of kriging, and a geographically weighted regression. The spatial locations of outliers were visualised using a geographical information system. Different methods showed generally consistent results, but differences existed. It is suggested that outliers identified by statistical methods should be confirmed and justified using scientific knowledge before they are properly dealt with.

摘要

城市土壤地球化学数据库中的异常值可能意味着潜在的污染土地。本研究应用了不同的方法,这些方法易于识别全球和空间异常值,用于确定爱尔兰戈尔韦市城市土壤中的 Pb 浓度。由于 Pb 浓度的概率特征明显偏态,因此在进一步分析之前进行了 Box-Cox 变换。直方图和箱线图的图形方法在原始数据集尺度上有效地识别了全局异常值。通过局部 Moran I 的空间局部关联的局部指标、克立金交叉验证和地理加权回归,可以识别空间异常值。使用地理信息系统可视化异常值的空间位置。不同的方法通常得出一致的结果,但也存在差异。建议在适当处理之前,应使用科学知识确认和验证统计方法识别的异常值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验