Suppr超能文献

利用流体动力学和电动效应相结合在微流控装置中进行基于电荷的粒子分离。

Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects.

作者信息

Jellema L C, Mey T, Koster S, Verpoorte E

机构信息

Pharmaceutical Analysis, Department of Pharmacy, University of Groningen, A. Deusinglaan 1, P.O. Box 196, 9700 AD, Groningen, The Netherlands.

出版信息

Lab Chip. 2009 Jul 7;9(13):1914-25. doi: 10.1039/b819054b. Epub 2009 Mar 26.

Abstract

A new microfluidic approach for charge-based particle separation using combined hydrodynamic and electrokinetic effects is presented. A recirculating flow pattern is employed, generated through application of bi-directional flow in a narrow glass microchannel incorporating diverging or converging segments at both ends. The bi-directional flow in turn is a result of opposing pressure-driven flow and electro-osmotic flow in the device. Trapping and preconcentration of charged particles is observed in the recirculating flow, under conditions where the average net velocity of the particles themselves approaches zero. This phenomenon is termed flow-induced electrokinetic trapping (FIET). Importantly, the electrophoretic mobility (zeta potential) of the particles determines the flow conditions required for trapping. In this paper, we exploit FIET for the first time to perform particle separations. Using a non-uniform channel, one type of particle can be trapped according to its zeta-potential, while particles with higher or lower zeta-potentials are flushed away with the pressure-driven or electro-osmotic components, respectively, of the flow. This was demonstrated using simple mixtures of two polystyrene bead types having approximately the same size (3 microm) but different zeta potentials (differences were in the order of 25 to 40 mV). To gain more insight into the separation mechanism, particle separations in straight, 3 cm-long microchannels with uniform cross-section were also studied under conditions of bi-directional flow without trapping. A thorough theoretical analysis confirmed that trapping occurs when electrokinetic and pressure-driven particle velocities are equal and opposite throughout the diverging segment. This makes it possible to predict the pressure and electric field conditions required to separate particles having defined zeta potentials.

摘要

本文提出了一种利用流体动力学和电动效应相结合的基于电荷的粒子分离新微流控方法。采用了一种循环流动模式,通过在两端带有发散或收敛段的狭窄玻璃微通道中施加双向流动来产生这种模式。双向流动又是由装置中相反的压力驱动流和电渗流导致的。在循环流动中,当粒子自身的平均净速度接近零时,观察到带电粒子的捕获和预浓缩现象。这种现象被称为流动诱导电动捕获(FIET)。重要的是,粒子的电泳迁移率(zeta电位)决定了捕获所需的流动条件。在本文中,我们首次利用FIET进行粒子分离。使用非均匀通道,一种类型的粒子可以根据其zeta电位被捕获,而具有较高或较低zeta电位的粒子则分别被流动中的压力驱动或电渗流成分冲走。这通过使用两种尺寸大致相同(3微米)但zeta电位不同(差异在25至40毫伏量级)的聚苯乙烯珠的简单混合物得到了证明。为了更深入了解分离机制,还研究了在双向流动且无捕获条件下,具有均匀横截面的3厘米长直微通道中的粒子分离。全面的理论分析证实,当电动和压力驱动的粒子速度在整个发散段相等且相反时,就会发生捕获。这使得预测分离具有特定zeta电位的粒子所需的压力和电场条件成为可能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验