Suppr超能文献

具有逻辑斯蒂肝细胞生长的乙型肝炎病毒感染模型的丰富动力学

Rich dynamics of a hepatitis B viral infection model with logistic hepatocyte growth.

作者信息

Hews Sarah, Eikenberry Steffen, Nagy John D, Kuang Yang

机构信息

Department of Mathematics and Statistics, Arizona State University, Tempe, AZ, 85287, USA.

出版信息

J Math Biol. 2010 Apr;60(4):573-90. doi: 10.1007/s00285-009-0278-3. Epub 2009 Jun 17.

Abstract

Chronic hepatitis B virus (HBV) infection is a major cause of human suffering, and a number of mathematical models have examined within-host dynamics of the disease. Most previous HBV infection models have assumed that: (a) hepatocytes regenerate at a constant rate from a source outside the liver; and/or (b) the infection takes place via a mass action process. Assumption (a) contradicts experimental data showing that healthy hepatocytes proliferate at a rate that depends on current liver size relative to some equilibrium mass, while assumption (b) produces a problematic basic reproduction number. Here we replace the constant infusion of healthy hepatocytes with a logistic growth term and the mass action infection term by a standard incidence function; these modifications enrich the dynamics of a well-studied model of HBV pathogenesis. In particular, in addition to disease free and endemic steady states, the system also allows a stable periodic orbit and a steady state at the origin. Since the system is not differentiable at the origin, we use a ratio-dependent transformation to show that there is a region in parameter space where the origin is globally stable. When the basic reproduction number, R (0), is less than 1, the disease free steady state is stable. When R (0) > 1 the system can either converge to the chronic steady state, experience sustained oscillations, or approach the origin. We characterize parameter regions for all three situations, identify a Hopf and a homoclinic bifurcation point, and show how they depend on the basic reproduction number and the intrinsic growth rate of hepatocytes.

摘要

慢性乙型肝炎病毒(HBV)感染是人类痛苦的主要原因,许多数学模型已经研究了该疾病在宿主体内的动态变化。大多数先前的HBV感染模型都假设:(a)肝细胞从肝脏外部的一个来源以恒定速率再生;和/或(b)感染通过质量作用过程发生。假设(a)与实验数据相矛盾,实验数据表明健康肝细胞的增殖速率取决于当前肝脏大小相对于某个平衡质量的比例,而假设(b)产生了一个有问题的基本再生数。在这里,我们用逻辑斯蒂增长项取代健康肝细胞的恒定注入,并将质量作用感染项替换为标准发病率函数;这些修改丰富了一个经过充分研究的HBV发病机制模型的动态变化。特别地,除了无病和地方病稳态外,该系统还允许一个稳定的周期轨道和一个原点处的稳态。由于该系统在原点处不可微,我们使用比例依赖变换来表明在参数空间中存在一个区域,其中原点是全局稳定的。当基本再生数R(0)小于1时,无病稳态是稳定 的。当R(0)>1时,系统可以收敛到慢性稳态、经历持续振荡或趋近原点。我们对所有三种情况的参数区域进行了表征,确定了一个霍普夫分岔点和一个同宿分岔点,并展示了它们如何依赖于基本再生数和肝细胞的内在增长率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验