Suppr超能文献

I型兰尼碱受体氨基末端β-三叶形结构域的晶体结构揭示了一个与疾病相关的突变“热点”环。

Crystal structure of type I ryanodine receptor amino-terminal beta-trefoil domain reveals a disease-associated mutation "hot spot" loop.

作者信息

Amador Fernando J, Liu Shuang, Ishiyama Noboru, Plevin Michael J, Wilson Aaron, MacLennan David H, Ikura Mitsuhiko

机构信息

Division of Signaling Biology, Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, Canada M5G 1L7.

出版信息

Proc Natl Acad Sci U S A. 2009 Jul 7;106(27):11040-4. doi: 10.1073/pnas.0905186106. Epub 2009 Jun 18.

Abstract

Muscle contraction and relaxation is regulated by transient elevations of myoplasmic Ca(2+). Ca(2+) is released from stores in the lumen of the sarco(endo)plasmic reticulum (SER) to initiate formation of the Ca(2+) transient by activation of a class of Ca(2+) release channels referred to as ryanodine receptors (RyRs) and is pumped back into the SER lumen by Ca(2+)-ATPases (SERCAs) to terminate the Ca(2+) transient. Mutations in the type 1 ryanodine receptor gene, RYR1, are associated with 2 skeletal muscle disorders, malignant hyperthermia (MH), and central core disease (CCD). The evaluation of proposed mechanisms by which RyR1 mutations cause MH and CCD is hindered by the lack of high-resolution structural information. Here, we report the crystal structure of the N-terminal 210 residues of RyR1 (RyR(NTD)) at 2.5 A. The RyR(NTD) structure is similar to that of the suppressor domain of type 1 inositol 1,4,5-trisphosphate receptor (IP(3)Rsup), but lacks most of the long helix-turn-helix segment of the "arm" domain in IP(3)Rsup. The N-terminal beta-trefoil fold, found in both RyR and IP(3)R, is likely to play a critical role in regulatory mechanisms in this channel family. A disease-associated mutation "hot spot" loop was identified between strands 8 and 9 in a highly basic region of RyR1. Biophysical studies showed that 3 MH-associated mutations (C36R, R164C, and R178C) do not adversely affect the global stability or fold of RyR(NTD), supporting previously described mechanisms whereby mutations perturb protein-protein interactions.

摘要

肌肉收缩和舒张受肌质中钙离子(Ca(2+))瞬时升高的调节。Ca(2+)从肌浆(内质)网(SER)腔内的储存部位释放,通过激活一类称为兰尼碱受体(RyRs)的Ca(2+)释放通道来启动Ca(2+)瞬变的形成,并通过Ca(2+)-ATP酶(SERCAs)被泵回SER腔以终止Ca(2+)瞬变。1型兰尼碱受体基因RYR1的突变与两种骨骼肌疾病相关,即恶性高热(MH)和中央轴空病(CCD)。由于缺乏高分辨率结构信息,对RyR1突变导致MH和CCD的机制评估受到阻碍。在此,我们报道了RyR1 N端210个残基(RyR(NTD))在2.5埃分辨率下的晶体结构。RyR(NTD)结构与1型肌醇1,4,5-三磷酸受体(IP(3)Rsup)的抑制结构域相似,但缺少IP(3)Rsup“臂”结构域中大部分长的螺旋-转角-螺旋片段。在RyR和IP(3)R中都发现的N端β-三叶折叠可能在该通道家族的调节机制中起关键作用。在RyR1的一个高度碱性区域的链8和链9之间鉴定出一个与疾病相关的突变“热点”环。生物物理研究表明,3个与MH相关的突变(C36R、R164C和R178C)不会对RyR(NTD)的整体稳定性或折叠产生不利影响,这支持了先前描述的突变扰乱蛋白质-蛋白质相互作用的机制。

相似文献

1
Crystal structure of type I ryanodine receptor amino-terminal beta-trefoil domain reveals a disease-associated mutation "hot spot" loop.
Proc Natl Acad Sci U S A. 2009 Jul 7;106(27):11040-4. doi: 10.1073/pnas.0905186106. Epub 2009 Jun 18.
4
Ryanodine receptor mutations in malignant hyperthermia and central core disease.
Hum Mutat. 2000;15(5):410-7. doi: 10.1002/(SICI)1098-1004(200005)15:5<410::AID-HUMU2>3.0.CO;2-D.
7
Structural and functional conservation of key domains in InsP3 and ryanodine receptors.
Nature. 2012 Jan 29;483(7387):108-12. doi: 10.1038/nature10751.
8
Structural determination of the phosphorylation domain of the ryanodine receptor.
FEBS J. 2012 Oct;279(20):3952-64. doi: 10.1111/j.1742-4658.2012.08755.x. Epub 2012 Sep 11.
10
Malignant hyperthermia-associated mutations in the S2-S3 cytoplasmic loop of type 1 ryanodine receptor calcium channel impair calcium-dependent inactivation.
Am J Physiol Cell Physiol. 2016 Nov 1;311(5):C749-C757. doi: 10.1152/ajpcell.00134.2016. Epub 2016 Aug 24.

引用本文的文献

2
Structural Insight Into Ryanodine Receptor Channelopathies.
Front Pharmacol. 2022 May 23;13:897494. doi: 10.3389/fphar.2022.897494. eCollection 2022.
3
Retrieving functional pathways of biomolecules from single-particle snapshots.
Nat Commun. 2020 Sep 18;11(1):4734. doi: 10.1038/s41467-020-18403-x.
6
Structure of RyR1 in native membranes.
EMBO Rep. 2020 May 6;21(5):e49891. doi: 10.15252/embr.201949891. Epub 2020 Mar 9.
7
Regulatory mechanisms of ryanodine receptor/Ca release channel revealed by recent advancements in structural studies.
J Muscle Res Cell Motil. 2021 Jun;42(2):291-304. doi: 10.1007/s10974-020-09575-6. Epub 2020 Feb 10.
9
Structure and Function of IP Receptors.
Cold Spring Harb Perspect Biol. 2019 Apr 1;11(4):a035063. doi: 10.1101/cshperspect.a035063.

本文引用的文献

2
NMR View: A computer program for the visualization and analysis of NMR data.
J Biomol NMR. 1994 Sep;4(5):603-14. doi: 10.1007/BF00404272.
3
Phaser crystallographic software.
J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674. doi: 10.1107/S0021889807021206. Epub 2007 Jul 13.
5
Subnanometer-resolution electron cryomicroscopy-based domain models for the cytoplasmic region of skeletal muscle RyR channel.
Proc Natl Acad Sci U S A. 2008 Jul 15;105(28):9610-5. doi: 10.1073/pnas.0803189105. Epub 2008 Jul 10.
6
Personal recollections on the discovery of the ryanodine receptors of muscle.
Biochem Biophys Res Commun. 2008 Apr 25;369(1):195-207. doi: 10.1016/j.bbrc.2007.12.119. Epub 2008 Jan 7.
7
IP3 receptor/Ca2+ channel: from discovery to new signaling concepts.
J Neurochem. 2007 Sep;102(5):1426-1446. doi: 10.1111/j.1471-4159.2007.04825.x.
8
The complex regulatory function of the ligand-binding domain of the inositol 1,4,5-trisphosphate receptor.
Cell Calcium. 2008 Jan;43(1):17-27. doi: 10.1016/j.ceca.2007.04.005. Epub 2007 May 17.
9
Ryanodine receptors and ventricular arrhythmias: emerging trends in mutations, mechanisms and therapies.
J Mol Cell Cardiol. 2007 Jan;42(1):34-50. doi: 10.1016/j.yjmcc.2006.08.115. Epub 2006 Nov 1.
10
Mutations in RYR1 in malignant hyperthermia and central core disease.
Hum Mutat. 2006 Oct;27(10):977-89. doi: 10.1002/humu.20356.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验