Hilbert Shawn A, Uiterwaal Cornelis, Barwick Brett, Batelaan Herman, Zewail Ahmed H
Department of Physics and Astronomy, University of Nebraska-Lincoln, 116 Brace Laboratory, Lincoln, NE 68588-0111, USA.
Proc Natl Acad Sci U S A. 2009 Jun 30;106(26):10558-63. doi: 10.1073/pnas.0904912106. Epub 2009 Jun 16.
Here, we describe the "temporal lens" concept that can be used for the focus and magnification of ultrashort electron packets in the time domain. The temporal lenses are created by appropriately synthesizing optical pulses that interact with electrons through the ponderomotive force. With such an arrangement, a temporal lens equation with a form identical to that of conventional light optics is derived. The analog of ray diagrams, but for electrons, are constructed to help the visualization of the process of compressing electron packets. It is shown that such temporal lenses not only compensate for electron pulse broadening due to velocity dispersion but also allow compression of the packets to durations much shorter than their initial widths. With these capabilities, ultrafast electron diffraction and microscopy can be extended to new domains,and, just as importantly, electron pulses can be delivered directly on an ultrafast techniques target specimen.
在此,我们描述了“时间透镜”概念,其可用于在时域中对超短电子包进行聚焦和放大。时间透镜是通过适当地合成与电子通过有质动力相互作用的光脉冲来创建的。通过这种设置,推导了一个形式与传统光学相同的时间透镜方程。构建了电子的类似于光线图的图示,以帮助直观理解压缩电子包的过程。结果表明,这种时间透镜不仅可以补偿由于速度色散导致的电子脉冲展宽,还能将电子包压缩到比其初始宽度短得多的持续时间。凭借这些能力,超快电子衍射和显微镜技术可以扩展到新的领域,同样重要的是,电子脉冲可以直接作用于超快技术的目标样本上。