Sabeh Farideh, Li Xiao-Yan, Saunders Thomas L, Rowe R Grant, Weiss Stephen J
Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA.
J Biol Chem. 2009 Aug 21;284(34):23001-11. doi: 10.1074/jbc.M109.002808. Epub 2009 Jun 19.
Fibroblasts degrade type I collagen, the major extracellular protein found in mammals, during events ranging from bulk tissue resorption to invasion through the three-dimensional extracellular matrix. Current evidence suggests that type I collagenolysis is mediated by secreted as well as membrane-anchored members of the matrix metalloproteinase (MMP) gene family. However, the roles played by these multiple and possibly redundant, degradative systems during fibroblast-mediated matrix remodeling is undefined. Herein, we use fibroblasts isolated from Mmp13(-/-), Mmp8(-/-), Mmp2(-/-), Mmp9(-/-), Mmp14(-/-) and Mmp16(-/-) mice to define the functional roles for secreted and membrane-anchored collagenases during collagen-resorptive versus collagen-invasive events. In the presence of a functional plasminogen activator-plasminogen axis, secreted collagenases arm cells with a redundant collagenolytic potential that allows fibroblasts harboring single deficiencies for either MMP-13, MMP-8, MMP-2, or MMP-9 to continue to degrade collagen comparably to wild-type fibroblasts. Likewise, Mmp14(-/-) or Mmp16(-/-) fibroblasts retain near-normal collagenolytic activity in the presence of plasminogen via the mobilization of secreted collagenases, but only Mmp14 (MT1-MMP) plays a required role in the collagenolytic processes that support fibroblast invasive activity. Furthermore, by artificially tethering a secreted collagenase to the surface of Mmp14(-/-) fibroblasts, we demonstrate that localized pericellular collagenolytic activity differentiates the collagen-invasive phenotype from bulk collagen degradation. Hence, whereas secreted collagenases arm fibroblasts with potent matrix-resorptive activity, only MT1-MMP confers the focal collagenolytic activity necessary for supporting the tissue-invasive phenotype.
在从大块组织吸收到通过三维细胞外基质侵袭等一系列过程中,成纤维细胞会降解I型胶原蛋白,这是哺乳动物中发现的主要细胞外蛋白。目前的证据表明,I型胶原溶解是由基质金属蛋白酶(MMP)基因家族的分泌型以及膜锚定成员介导的。然而,这些多个且可能冗余的降解系统在成纤维细胞介导的基质重塑过程中所起的作用尚不清楚。在此,我们使用从Mmp13(-/-)、Mmp8(-/-)、Mmp2(-/-)、Mmp9(-/-)、Mmp14(-/-)和Mmp16(-/-)小鼠分离出的成纤维细胞,来确定分泌型和膜锚定胶原酶在胶原吸收与胶原侵袭事件中的功能作用。在存在功能性纤溶酶原激活剂-纤溶酶原轴的情况下,分泌型胶原酶赋予细胞冗余的胶原溶解潜能,使得携带MMP-13、MMP-8、MMP-2或MMP-9单一缺陷的成纤维细胞能够继续与野生型成纤维细胞相当程度地降解胶原蛋白。同样,Mmp14(-/-)或Mmp16(-/-)成纤维细胞在纤溶酶原存在的情况下,通过分泌型胶原酶的动员保留接近正常的胶原溶解活性,但只有Mmp14(MT1-MMP)在支持成纤维细胞侵袭活性的胶原溶解过程中发挥必要作用。此外,通过将一种分泌型胶原酶人工连接到Mmp14(-/-)成纤维细胞表面,我们证明局部细胞周围胶原溶解活性将胶原侵袭表型与大块胶原降解区分开来。因此,虽然分泌型胶原酶赋予成纤维细胞强大的基质吸收活性,但只有MT1-MMP赋予支持组织侵袭表型所需的局部胶原溶解活性。