[用于对不明原发癌进行临床诊断的分子诊断方法]
[Molecular diagnostic methods designed for clinical approach to cancer of unknown origin].
作者信息
Fujita Yoshihiko, Nishio Kazuto
机构信息
Dept. of Genome Biology, Kinki University School of Medicine, Japan.
出版信息
Gan To Kagaku Ryoho. 2009 Jun;36(6):923-6.
Several studies have shown that patterns of gene expression remain consistent with the tissue of origin in cancer samples. Gene expression profiling may therefore offer a promising new technology to build a site of origin classifier with the ultimate aim to determine the origin of cancer of unknown primary(CUP). A single cDNA microarray platform was used to profile 229 tumors of known origin(14 tumor types). This data set was subsequently used for training and validation of a support vector machine(SVM)classifier, demonstrating 89% accuracy to predict a site of origin(13 types). Applying this microarray SVM classifier to 13 cases of CUP, a high confidence prediction was made in 11 of 13 cases. These predictions were supported by comprehensive review of the patients' clinical histories. Thus, data generated using both microarray and quantitative PCR can be used to train and validate a cross-platform SVM model with high prediction accuracy.
多项研究表明,癌症样本中的基因表达模式与组织来源保持一致。因此,基因表达谱分析可能提供一种有前景的新技术来构建一个起源部位分类器,其最终目标是确定未知原发灶癌症(CUP)的起源。使用单个cDNA微阵列平台对229个已知起源的肿瘤(14种肿瘤类型)进行分析。该数据集随后用于支持向量机(SVM)分类器的训练和验证,结果显示预测起源部位(13种类型)的准确率达89%。将此微阵列SVM分类器应用于13例CUP病例,在13例中的11例做出了高可信度预测。这些预测得到了对患者临床病史的全面回顾的支持。因此,使用微阵列和定量PCR生成的数据可用于训练和验证具有高预测准确性的跨平台SVM模型。