Suppr超能文献

通过源自正常组织的基因表达特征预测肿瘤的起源部位。

Predicting the site of origin of tumors by a gene expression signature derived from normal tissues.

机构信息

Merck KGaA, Merck Serono, Drug Discovery Informatics, Darmstadt, Germany.

出版信息

Oncogene. 2010 Aug 5;29(31):4485-92. doi: 10.1038/onc.2010.196. Epub 2010 May 31.

Abstract

Multiple expression signatures for the prediction of the site of origin of metastatic cancer of unknown primary origin (CUP) have been developed. Owing to their limited coverage of tumor types and suboptimal prediction accuracy on distinct tumors, there is still room for alternative CUP gene expression signatures. Whereas in past studies, CUP classifiers were trained solely on data from tumor samples, we now use expression patterns from normal tissues for classifier training. This approach potentially avoids pitfalls related to the representation of genetically heterogeneous tumor subtypes during classifier training. Two expression data sets of normal human tissues have been reanalyzed to derive an expression signature for liver, prostate, kidney, ovarian and lung tissues. In reciprocal validation, classifiers trained on either data set achieved overall accuracies greater than 97%. Classifiers trained on combined expression data from both normal tissue data sets were able to predict the site of origin in a cohort of 652 primary tumors with approximately 90% accuracy. Prediction accuracies of primary cancer-based classifiers were in the same range, as determined by cross-validation on this cohort. For individual tumor types, normal tissue-based classifiers achieved sensitivities in the range of 64-99% and specificities in the range of 92-100%. Primary origins for 12 of 20 metastases were predicted correctly, with false predictions highlighting the need for accurate sample preparation to avoid contaminations by metastases-surrounding tissue. We conclude that gene expression patterns of normal tissues harbor phenotypic information that is retained in tumors and can be sufficient to recover the type of primary tumor from expression patterns alone.

摘要

已经开发出了多种用于预测转移性癌症未知原发灶(CUP)起源部位的表达特征。由于这些特征对肿瘤类型的覆盖范围有限,并且在不同肿瘤上的预测准确性也不理想,因此仍然需要替代的 CUP 基因表达特征。过去的研究中,CUP 分类器仅在肿瘤样本数据上进行训练,而我们现在使用正常组织的表达模式进行分类器训练。这种方法可能避免了在分类器训练过程中由于遗传异质性肿瘤亚型的表示而产生的问题。我们重新分析了两个正常人类组织的表达数据集,以得出用于肝脏、前列腺、肾脏、卵巢和肺部组织的表达特征。在相互验证中,在任一个数据集上训练的分类器的总体准确率均大于 97%。在由两个正常组织数据集的组合表达数据训练的分类器中,能够以约 90%的准确率预测 652 个原发性肿瘤的起源部位。通过对该队列进行交叉验证,基于原发性癌症的分类器的预测准确率也在同一范围内。对于个别肿瘤类型,基于正常组织的分类器的灵敏度在 64%-99%之间,特异性在 92%-100%之间。对于 20 个转移灶中的 12 个,正确预测了原发部位,错误预测突出了需要进行准确的样本制备,以避免由转移灶周围组织的污染。我们得出结论,正常组织的基因表达模式包含保留在肿瘤中的表型信息,并且仅从表达模式就足以恢复原发性肿瘤的类型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验