Zhang Yu, Donev Aleksandar, Weisgraber Todd, Alder Berni J, Graham Michael D, de Pablo Juan J
Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706-1691, USA.
J Chem Phys. 2009 Jun 21;130(23):234902. doi: 10.1063/1.3149860.
We study the cyclic dynamics of a single polymer tethered to a hard wall in shear flow using Brownian dynamics, the lattice Boltzmann method, and a recent stochastic event-driven molecular dynamics algorithm. We focus on the dynamics of the free end (last bead) of the tethered chain and we examine the cross-correlation function and power spectral density of the chain extensions in the flow and gradient directions as a function of chain length N and dimensionless shear rate Wi. Extensive simulation results suggest a classical fluctuation-dissipation stochastic process and question the existence of periodicity of the cyclic dynamics, as previously claimed. We support our numerical findings with a simple analytical calculation for a harmonic dimer in shear flow.
我们使用布朗动力学、格子玻尔兹曼方法以及一种近期的随机事件驱动分子动力学算法,研究了在剪切流中拴系于硬壁上的单个聚合物的循环动力学。我们聚焦于拴系链自由端(最后一个珠子)的动力学,并研究了链在流动方向和梯度方向上的伸长的互相关函数和功率谱密度,作为链长N和无量纲剪切率Wi的函数。大量的模拟结果表明存在一个经典的涨落耗散随机过程,并对先前声称的循环动力学的周期性的存在提出了质疑。我们通过对剪切流中一个简谐振子二聚体的简单解析计算来支持我们的数值研究结果。