Suppr超能文献

γ-氨基丁酸(GABA)塑造了听觉皮层中对调频扫描的速率和方向的选择性。

GABA shapes selectivity for the rate and direction of frequency-modulated sweeps in the auditory cortex.

作者信息

Razak Khaleel A, Fuzessery Zoltan M

机构信息

Department 3166, Zoology and Physiology, University of Wyoming, 1000 E. University Ave., Laramie, WY 82071, USA.

出版信息

J Neurophysiol. 2009 Sep;102(3):1366-78. doi: 10.1152/jn.00334.2009. Epub 2009 Jun 24.

Abstract

In the pallid bat auditory cortex and inferior colliculus (IC), the majority of neurons tuned in the echolocation range is selective for the direction and rate of frequency-modulated (FM) sweeps used in echolocation. Such selectivity is shaped mainly by spectrotemporal asymmetries in sideband inhibition. An early-arriving, low-frequency inhibition (LFI) shapes direction selectivity. A delayed, high-frequency inhibition (HFI) shapes rate selectivity for downward sweeps. Using iontophoretic blockade of GABAa receptors, we show that cortical FM sweep selectivity is at least partially shaped locally. GABAa receptor antagonists, bicuculline or gabazine, reduced or eliminated direction and rate selectivity in approximately 50% of neurons. Intracortical GABA shapes FM sweep selectivity by either creating the underlying sideband inhibition or by advancing the arrival time of inhibition relative to excitation. Given that FM sweep selectivity and asymmetries in sideband inhibition are already present in the IC, these data suggest a refinement or recreation of similar response properties at the cortical level.

摘要

在苍白洞蝠的听觉皮层和下丘(IC)中,大多数调谐到回声定位频率范围的神经元对回声定位中使用的调频(FM)扫频的方向和速率具有选择性。这种选择性主要由边带抑制中的频谱时间不对称性塑造。早期到达的低频抑制(LFI)塑造方向选择性。延迟的高频抑制(HFI)塑造向下扫频的速率选择性。通过离子电泳阻断GABAa受体,我们表明皮层FM扫频选择性至少部分是在局部形成的。GABAa受体拮抗剂荷包牡丹碱或加巴喷丁,在大约50%的神经元中降低或消除了方向和速率选择性。皮层内的GABA通过产生潜在的边带抑制或通过相对于兴奋提前抑制的到达时间来塑造FM扫频选择性。鉴于IC中已经存在FM扫频选择性和边带抑制的不对称性,这些数据表明在皮层水平上对类似反应特性进行了细化或重塑。

相似文献

1
GABA shapes selectivity for the rate and direction of frequency-modulated sweeps in the auditory cortex.
J Neurophysiol. 2009 Sep;102(3):1366-78. doi: 10.1152/jn.00334.2009. Epub 2009 Jun 24.
2
Differential roles of GABAergic and glycinergic input on FM selectivity in the inferior colliculus of the pallid bat.
J Neurophysiol. 2011 Nov;106(5):2523-35. doi: 10.1152/jn.00569.2011. Epub 2011 Jul 20.
5
Response selectivity for multiple dimensions of frequency sweeps in the pallid bat inferior colliculus.
J Neurophysiol. 1994 Sep;72(3):1061-79. doi: 10.1152/jn.1994.72.3.1061.
7
Motion processing in the auditory cortex of the rufous horseshoe bat: role of GABAergic inhibition.
Eur J Neurosci. 2001 Nov;14(10):1687-701. doi: 10.1046/j.0953-816x.2001.01797.x.
8
Mechanisms underlying intensity-dependent changes in cortical selectivity for frequency-modulated sweeps.
J Neurophysiol. 2012 Apr;107(8):2202-11. doi: 10.1152/jn.00922.2011. Epub 2012 Jan 25.
10
Role of GABA in shaping frequency tuning and creating FM sweep selectivity in the inferior colliculus.
J Neurophysiol. 1996 Aug;76(2):1059-73. doi: 10.1152/jn.1996.76.2.1059.

引用本文的文献

2
Frequency Following Responses to Tone Glides: Effects of Age and Hearing Loss.
J Assoc Res Otolaryngol. 2023 Aug;24(4):429-439. doi: 10.1007/s10162-023-00900-7. Epub 2023 Jul 12.
3
Age-related changes in excitatory and inhibitory intra-cortical circuits in auditory cortex of C57Bl/6 mice.
Hear Res. 2023 Mar 1;429:108685. doi: 10.1016/j.heares.2022.108685. Epub 2022 Dec 27.
4
Recurrent network dynamics shape direction selectivity in primary auditory cortex.
Nat Commun. 2021 Jan 12;12(1):314. doi: 10.1038/s41467-020-20590-6.
5
Preserving Inhibition during Developmental Hearing Loss Rescues Auditory Learning and Perception.
J Neurosci. 2019 Oct 16;39(42):8347-8361. doi: 10.1523/JNEUROSCI.0749-19.2019. Epub 2019 Aug 26.
6
Neural distinctiveness declines with age in auditory cortex and is associated with auditory GABA levels.
Neuroimage. 2019 Nov 1;201:116033. doi: 10.1016/j.neuroimage.2019.116033. Epub 2019 Jul 18.
7
Age-related Changes in Neural Coding of Envelope Cues: Peripheral Declines and Central Compensation.
Neuroscience. 2019 May 21;407:21-31. doi: 10.1016/j.neuroscience.2018.12.007. Epub 2018 Dec 14.
8
Late maturation of backward masking in auditory cortex.
J Neurophysiol. 2018 Oct 1;120(4):1558-1571. doi: 10.1152/jn.00114.2018. Epub 2018 Jul 11.
10
Matched Behavioral and Neural Adaptations for Low Sound Level Echolocation in a Gleaning Bat, .
eNeuro. 2017 Mar 2;4(1). doi: 10.1523/ENEURO.0018-17.2017. eCollection 2017 Jan-Feb.

本文引用的文献

2
Experience is required for the maintenance and refinement of FM sweep selectivity in the developing auditory cortex.
Proc Natl Acad Sci U S A. 2008 Mar 18;105(11):4465-70. doi: 10.1073/pnas.0709504105. Epub 2008 Mar 11.
5
Nonmonotonic synaptic excitation and imbalanced inhibition underlying cortical intensity tuning.
Neuron. 2006 Nov 22;52(4):705-15. doi: 10.1016/j.neuron.2006.10.009.
8
Differential effects of iontophoretic in vivo application of the GABA(A)-antagonists bicuculline and gabazine in sensory cortex.
Hear Res. 2006 Feb;212(1-2):224-35. doi: 10.1016/j.heares.2005.12.002. Epub 2006 Jan 25.
9
Development of spectral and temporal response selectivity in the auditory cortex.
Proc Natl Acad Sci U S A. 2005 Nov 8;102(45):16460-5. doi: 10.1073/pnas.0508239102. Epub 2005 Nov 1.
10
Synaptic mechanisms of forward suppression in rat auditory cortex.
Neuron. 2005 Aug 4;47(3):437-45. doi: 10.1016/j.neuron.2005.06.009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验