Suppr超能文献

皮层强度调谐背后的非单调突触兴奋和抑制失衡。

Nonmonotonic synaptic excitation and imbalanced inhibition underlying cortical intensity tuning.

作者信息

Wu Guangying K, Li Pingyang, Tao Huizhong W, Zhang Li I

机构信息

Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California 90033, USA.

出版信息

Neuron. 2006 Nov 22;52(4):705-15. doi: 10.1016/j.neuron.2006.10.009.

Abstract

Intensity-tuned neurons, characterized by their nonmonotonic response-level function, may play important roles in the encoding of sound intensity-related information. The synaptic mechanisms underlying intensity tuning remain unclear. Here, in vivo whole-cell recordings in rat auditory cortex revealed that intensity-tuned neurons, mostly clustered in a posterior zone, receive imbalanced tone-evoked excitatory and inhibitory synaptic inputs. Excitatory inputs exhibit nonmonotonic intensity tuning, whereas with tone intensity increments, the temporally delayed inhibitory inputs increase monotonically in strength. In addition, this delay reduces with the increase of intensity, resulting in an enhanced suppression of excitation at high intensities and a significant sharpening of intensity tuning. In contrast, non-intensity-tuned neurons exhibit covaried excitatory and inhibitory inputs, and the relative time interval between them is stable with intensity increments, resulting in monotonic response-level function. Thus, cortical intensity tuning is primarily determined by excitatory inputs and shaped by cortical inhibition through a dynamic control of excitatory and inhibitory timing.

摘要

强度调谐神经元以其非单调响应水平函数为特征,可能在声音强度相关信息的编码中发挥重要作用。强度调谐背后的突触机制仍不清楚。在这里,大鼠听觉皮层的体内全细胞记录显示,强度调谐神经元大多聚集在后部区域,接受不均衡的音调诱发兴奋性和抑制性突触输入。兴奋性输入表现出非单调强度调谐,而随着音调强度增加,时间延迟的抑制性输入强度单调增加。此外,这种延迟随着强度的增加而减小,导致在高强度下对兴奋的抑制增强,强度调谐显著锐化。相比之下,非强度调谐神经元表现出兴奋性和抑制性输入协同变化,并且它们之间的相对时间间隔随着强度增加而稳定,导致单调响应水平函数。因此,皮层强度调谐主要由兴奋性输入决定,并通过对兴奋性和抑制性时间的动态控制由皮层抑制塑造。

相似文献

1
Nonmonotonic synaptic excitation and imbalanced inhibition underlying cortical intensity tuning.
Neuron. 2006 Nov 22;52(4):705-15. doi: 10.1016/j.neuron.2006.10.009.
2
Tone-evoked excitatory and inhibitory synaptic conductances of primary auditory cortex neurons.
J Neurophysiol. 2004 Jul;92(1):630-43. doi: 10.1152/jn.01020.2003. Epub 2004 Mar 3.
3
Unbalanced synaptic inhibition can create intensity-tuned auditory cortex neurons.
Neuroscience. 2007 Apr 25;146(1):449-62. doi: 10.1016/j.neuroscience.2007.01.019. Epub 2007 Feb 22.
4
Imbalance of excitation and inhibition at threshold level in the auditory cortex.
Front Neural Circuits. 2015 Mar 18;9:11. doi: 10.3389/fncir.2015.00011. eCollection 2015.
6
Fine-tuning of pre-balanced excitation and inhibition during auditory cortical development.
Nature. 2010 Jun 17;465(7300):927-31. doi: 10.1038/nature09079.
7
Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities.
Nat Neurosci. 2008 May;11(5):535-7. doi: 10.1038/nn.2105. Epub 2008 Mar 30.
8
Synaptic mechanisms underlying auditory processing.
Curr Opin Neurobiol. 2006 Aug;16(4):371-6. doi: 10.1016/j.conb.2006.06.015. Epub 2006 Jul 13.
9
Heterosynaptic Plasticity Determines the Set Point for Cortical Excitatory-Inhibitory Balance.
Neuron. 2020 Jun 3;106(5):842-854.e4. doi: 10.1016/j.neuron.2020.03.002. Epub 2020 Mar 25.
10
Balanced tone-evoked synaptic excitation and inhibition in mouse auditory cortex.
Neuroscience. 2009 Nov 10;163(4):1302-15. doi: 10.1016/j.neuroscience.2009.07.032. Epub 2009 Jul 21.

引用本文的文献

1
Distinct Inhibitory Neurons Differently Shape Neuronal Codes for Sound Intensity in the Auditory Cortex.
J Neurosci. 2025 Jan 8;45(2):e1502232024. doi: 10.1523/JNEUROSCI.1502-23.2024.
3
Cortical determinants of loudness perception and auditory hypersensitivity.
bioRxiv. 2024 May 30:2024.05.30.596691. doi: 10.1101/2024.05.30.596691.
4
Neurobiochemical Disturbances in Psychosis and their Implications for Therapeutic Intervention.
Curr Top Med Chem. 2024;24(20):1784-1798. doi: 10.2174/0115680266282773240116073618.
5
Input-specific synaptic depression shapes temporal integration in mouse visual cortex.
Neuron. 2023 Oct 18;111(20):3255-3269.e6. doi: 10.1016/j.neuron.2023.07.003. Epub 2023 Aug 4.
6
Early-Life Stress Impairs Perception and Neural Encoding of Rapid Signals in the Auditory Pathway.
J Neurosci. 2023 May 3;43(18):3232-3244. doi: 10.1523/JNEUROSCI.1787-22.2023. Epub 2023 Mar 27.
7
"Distinct inhibitory neurons differently shape neuronal codes for sound intensity in the auditory cortex".
bioRxiv. 2024 Sep 27:2023.02.01.526470. doi: 10.1101/2023.02.01.526470.
8
Neural signatures of auditory hypersensitivity following acoustic trauma.
Elife. 2022 Sep 16;11:e80015. doi: 10.7554/eLife.80015.
9
Neural Processing of Naturalistic Echolocation Signals in Bats.
Front Neural Circuits. 2022 May 18;16:899370. doi: 10.3389/fncir.2022.899370. eCollection 2022.
10
Context-Dependent Inhibitory Control of Stimulus-Specific Adaptation.
J Neurosci. 2022 Jun 8;42(23):4629-4651. doi: 10.1523/JNEUROSCI.0988-21.2022. Epub 2022 Apr 27.

本文引用的文献

1
Unbalanced synaptic inhibition can create intensity-tuned auditory cortex neurons.
Neuroscience. 2007 Apr 25;146(1):449-62. doi: 10.1016/j.neuroscience.2007.01.019. Epub 2007 Feb 22.
2
Perceptual learning directs auditory cortical map reorganization through top-down influences.
J Neurosci. 2006 May 3;26(18):4970-82. doi: 10.1523/JNEUROSCI.3771-05.2006.
3
Fine functional organization of auditory cortex revealed by Fourier optical imaging.
Proc Natl Acad Sci U S A. 2005 Sep 13;102(37):13325-30. doi: 10.1073/pnas.0505592102. Epub 2005 Sep 1.
4
Synaptic mechanisms of forward suppression in rat auditory cortex.
Neuron. 2005 Aug 4;47(3):437-45. doi: 10.1016/j.neuron.2005.06.009.
5
Associative learning shapes the neural code for stimulus magnitude in primary auditory cortex.
Proc Natl Acad Sci U S A. 2004 Nov 16;101(46):16351-6. doi: 10.1073/pnas.0407586101. Epub 2004 Nov 8.
6
Comparison of ultrasonic vocalizations emitted by rodent pups.
Exp Anim. 2004 Oct;53(5):409-16. doi: 10.1538/expanim.53.409.
7
First-spike latency of auditory neurons revisited.
Curr Opin Neurobiol. 2004 Aug;14(4):461-7. doi: 10.1016/j.conb.2004.07.002.
9
GABA( A) synapses shape neuronal responses to sound intensity in the inferior colliculus.
J Neurosci. 2004 May 26;24(21):5031-43. doi: 10.1523/JNEUROSCI.0357-04.2004.
10
Tone-evoked excitatory and inhibitory synaptic conductances of primary auditory cortex neurons.
J Neurophysiol. 2004 Jul;92(1):630-43. doi: 10.1152/jn.01020.2003. Epub 2004 Mar 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验