Suppr超能文献

基于HINT的用于研究蛋白质-配体复合物结合自由能和质子化状态的网络应用程序。

Web application for studying the free energy of binding and protonation states of protein-ligand complexes based on HINT.

作者信息

Bayden Alexander S, Fornabaio Micaela, Scarsdale J Neel, Kellogg Glen E

机构信息

Department of Medicinal Chemistry & Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, VA 23298-0540, USA.

出版信息

J Comput Aided Mol Des. 2009 Sep;23(9):621-32. doi: 10.1007/s10822-009-9270-7. Epub 2009 Jun 25.

Abstract

A public web server performing computational titration at the active site in a protein-ligand complex has been implemented. This calculation is based on the Hydropathic interaction noncovalent force field. From 3D coordinate data for the protein, ligand and bridging waters (if available), the server predicts the best combination of protonation states for each ionizable residue and/or ligand functional group as well as the Gibbs free energy of binding for the ionization-optimized protein-ligand complex. The 3D structure for the modified molecules is available as output. In addition, a graph depicting how this energy changes with acidity, i.e., as a function of added protons, can be obtained. This data may prove to be of use in preparing models for virtual screening and molecular docking. A few illustrative examples are presented. In beta secretase (2va7) computational titration flipped the amide groups of Gln12 and Asn37 and protonated a ligand amine yielding an improvement of 6.37 kcal mol(-1) in the protein-ligand binding score. Protonation of Glu139 in mutant HIV-1 reverse transcriptase (2opq) allows a water bridge between the protein and inhibitor that increases the protein-ligand interaction score by 0.16 kcal mol(-1). In human sialidase NEU2 complexed with an isobutyl ether mimetic inhibitor (2f11) computational titration suggested that protonating Glu218, deprotonating Arg237, flipping the amide bond on Tyr334, and optimizing the positions of several other polar protons would increase the protein-ligand interaction score by 0.71 kcal mol(-1).

摘要

已经实现了一个在蛋白质 - 配体复合物的活性位点进行计算滴定的公共网络服务器。该计算基于疏水相互作用非共价力场。根据蛋白质、配体和桥连水(如果有的话)的三维坐标数据,服务器预测每个可电离残基和/或配体官能团的最佳质子化状态组合,以及电离优化后的蛋白质 - 配体复合物的结合吉布斯自由能。修饰分子的三维结构可作为输出提供。此外,还可以获得一个描绘该能量如何随酸度变化(即作为添加质子的函数)的图表。这些数据可能在准备虚拟筛选和分子对接模型方面有用。给出了一些说明性示例。在β-分泌酶(2va7)中,计算滴定使Gln12和Asn37的酰胺基团翻转,并使一个配体胺质子化,从而使蛋白质 - 配体结合分数提高了6.37千卡/摩尔(-1)。突变型HIV - 1逆转录酶(2opq)中Glu139的质子化允许在蛋白质和抑制剂之间形成水桥,使蛋白质 - 配体相互作用分数增加了0.16千卡/摩尔(-1)。在与异丁基醚模拟抑制剂复合的人唾液酸酶NEU2(2f11)中,计算滴定表明,使Glu218质子化、使Arg237去质子化、翻转Tyr334上的酰胺键以及优化其他几个极性质子的位置将使蛋白质 - 配体相互作用分数提高0.71千卡/摩尔(-1)。

相似文献

1
Web application for studying the free energy of binding and protonation states of protein-ligand complexes based on HINT.
J Comput Aided Mol Des. 2009 Sep;23(9):621-32. doi: 10.1007/s10822-009-9270-7. Epub 2009 Jun 25.
4
Impact of ligand protonation on virtual screening against beta-secretase (BACE1).
J Chem Inf Model. 2007 Nov-Dec;47(6):2366-73. doi: 10.1021/ci700223p. Epub 2007 Oct 18.
5
Computational titration analysis of a multiprotic HIV-1 protease-ligand complex.
J Am Chem Soc. 2004 Sep 29;126(38):11764-5. doi: 10.1021/ja0465754.
7
Bound water at protein-protein interfaces: partners, roles and hydrophobic bubbles as a conserved motif.
PLoS One. 2011;6(9):e24712. doi: 10.1371/journal.pone.0024712. Epub 2011 Sep 22.
8
Energetics of the protein-DNA-water interaction.
BMC Struct Biol. 2007 Jan 10;7:4. doi: 10.1186/1472-6807-7-4.

引用本文的文献

1
Computational reconstruction of atomistic protein structures from coarse-grained models.
Comput Struct Biotechnol J. 2019 Dec 26;18:162-176. doi: 10.1016/j.csbj.2019.12.007. eCollection 2020.
2
ProteinsPlus: a web portal for structure analysis of macromolecules.
Nucleic Acids Res. 2017 Jul 3;45(W1):W337-W343. doi: 10.1093/nar/gkx333.
4
Kinetic barriers in the isomerization of substituted ureas: implications for computer-aided drug design.
J Comput Aided Mol Des. 2016 May;30(5):391-400. doi: 10.1007/s10822-016-9913-4. Epub 2016 Jun 7.
5
Protoss: a holistic approach to predict tautomers and protonation states in protein-ligand complexes.
J Cheminform. 2014 Apr 3;6:12. doi: 10.1186/1758-2946-6-12. eCollection 2014.
6
The role of protonation states in ligand-receptor recognition and binding.
Curr Pharm Des. 2013;19(23):4182-90. doi: 10.2174/1381612811319230004.
7
Bound water at protein-protein interfaces: partners, roles and hydrophobic bubbles as a conserved motif.
PLoS One. 2011;6(9):e24712. doi: 10.1371/journal.pone.0024712. Epub 2011 Sep 22.
8
Factors influencing protein tyrosine nitration--structure-based predictive models.
Free Radic Biol Med. 2011 Mar 15;50(6):749-62. doi: 10.1016/j.freeradbiomed.2010.12.016. Epub 2010 Dec 21.
9
Fast automated placement of polar hydrogen atoms in protein-ligand complexes.
J Cheminform. 2009 Aug 12;1(1):13. doi: 10.1186/1758-2946-1-13.
10
Hydrophobicity--shake flasks, protein folding and drug discovery.
Curr Top Med Chem. 2010;10(1):67-83. doi: 10.2174/156802610790232233.

本文引用的文献

1
Energy-based prediction of amino acid-nucleotide base recognition.
J Comput Chem. 2008 Sep;29(12):1955-69. doi: 10.1002/jcc.20954.
2
Robust classification of "relevant" water molecules in putative protein binding sites.
J Med Chem. 2008 Feb 28;51(4):1063-7. doi: 10.1021/jm701023h. Epub 2008 Jan 31.
5
Tyrosine nitration of IkappaBalpha: a novel mechanism for NF-kappaB activation.
Biochemistry. 2007 Oct 23;46(42):11671-83. doi: 10.1021/bi701107z. Epub 2007 Oct 2.
6
NQ-Flipper: recognition and correction of erroneous asparagine and glutamine side-chain rotamers in protein structures.
Nucleic Acids Res. 2007 Jul;35(Web Server issue):W403-6. doi: 10.1093/nar/gkm263. Epub 2007 May 3.
7
The consequences of scoring docked ligand conformations using free energy correlations.
Eur J Med Chem. 2007 Jul;42(7):921-33. doi: 10.1016/j.ejmech.2006.12.037. Epub 2007 Jan 21.
8
Energetics of the protein-DNA-water interaction.
BMC Struct Biol. 2007 Jan 10;7:4. doi: 10.1186/1472-6807-7-4.
10
PHEPS: web-based pH-dependent Protein Electrostatics Server.
Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W43-7. doi: 10.1093/nar/gkl165.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验