Suppr超能文献

质子化状态在配体-受体识别和结合中的作用。

The role of protonation states in ligand-receptor recognition and binding.

机构信息

Computational Biophysics and Bioinformatics, Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA.

出版信息

Curr Pharm Des. 2013;19(23):4182-90. doi: 10.2174/1381612811319230004.

Abstract

In this review we discuss the role of protonation states in receptor-ligand interactions, providing experimental evidences and computational predictions that complex formation may involve titratable groups with unusual pKa's and that protonation states frequently change from unbound to bound states. These protonation changes result in proton uptake/release, which in turn causes the pH-dependence of the binding. Indeed, experimental data strongly suggest that almost any binding is pH-dependent and to be correctly modeled, the protonation states must be properly assigned prior to and after the binding. One may accurately predict the protonation states when provided with the structures of the unbound proteins and their complex; however, the modeling becomes much more complicated if the bound state has to be predicted in a docking protocol or if the structures of either bound or unbound receptor-ligand are not available. The major challenges that arise in these situations are the coupling between binding and protonation states, and the conformational changes induced by the binding and ionization states of titratable groups. In addition, any assessment of the protonation state, either before or after binding, must refer to the pH of binding, which is frequently unknown. Thus, even if the pKa's of ionizable groups can be correctly assigned for both unbound and bound state, without knowing the experimental pH one cannot assign the corresponding protonation states, and consequently one cannot calculate the resulting proton uptake/release. It is pointed out, that while experimental pH may not be the physiological pH and binding may involve proton uptake/release, there is a tendency that the native receptor-ligand complexes have evolved toward specific either subcellular or tissue characteristic pH at which the proton uptake/release is either minimal or absent.

摘要

在这篇综述中,我们讨论了质子化状态在受体-配体相互作用中的作用,提供了实验证据和计算预测,表明复合物的形成可能涉及具有不寻常 pKa 的可滴定基团,并且质子化状态经常从非结合状态变为结合状态。这些质子化变化导致质子的摄取/释放,这反过来又导致结合的 pH 依赖性。事实上,实验数据强烈表明,几乎任何结合都是 pH 依赖性的,为了正确建模,必须在结合前后正确分配质子化状态。如果提供了未结合蛋白质及其复合物的结构,则可以准确预测质子化状态;但是,如果必须在对接方案中预测结合状态,或者如果未结合或结合的受体-配体的结构不可用,则建模变得更加复杂。在这些情况下出现的主要挑战是结合和质子化状态之间的耦合,以及结合和可滴定基团的离解状态引起的构象变化。此外,在结合前后对质子化状态的任何评估都必须参考结合 pH,而结合 pH 通常是未知的。因此,即使可以正确分配未结合和结合状态下可电离基团的 pKa,如果不知道实验 pH,就不能分配相应的质子化状态,因此也不能计算出由此产生的质子摄取/释放。需要指出的是,虽然实验 pH 可能不是生理 pH,结合可能涉及质子摄取/释放,但天然受体-配体复合物已经朝着特定的亚细胞或组织特征 pH 进化,在该 pH 下质子摄取/释放最小或不存在。

相似文献

1
The role of protonation states in ligand-receptor recognition and binding.
Curr Pharm Des. 2013;19(23):4182-90. doi: 10.2174/1381612811319230004.
2
Protonation and pK changes in protein-ligand binding.
Q Rev Biophys. 2013 May;46(2):181-209. doi: 10.1017/S0033583513000024.
4
Protein-protein binding is often associated with changes in protonation state.
Proteins. 2008 Apr;71(1):81-91. doi: 10.1002/prot.21657.
6
Very fast prediction and rationalization of pKa values for protein-ligand complexes.
Proteins. 2008 Nov 15;73(3):765-83. doi: 10.1002/prot.22102.
7
p Calculations with the Polarizable Drude Force Field and Poisson-Boltzmann Solvation Model.
J Chem Theory Comput. 2020 Jul 14;16(7):4655-4668. doi: 10.1021/acs.jctc.0c00111. Epub 2020 Jun 12.
9
Coupling of electron transfer to proton uptake at the Q(B) site of the bacterial reaction center: a perspective from FTIR difference spectroscopy.
Biochim Biophys Acta. 2008 Oct;1777(10):1229-48. doi: 10.1016/j.bbabio.2008.06.012. Epub 2008 Jul 11.

引用本文的文献

2
Improved Structure-Based Histidine p Prediction for pH-Responsive Protein Design.
J Chem Inf Model. 2025 Feb 10;65(3):1560-1569. doi: 10.1021/acs.jcim.4c01957. Epub 2025 Jan 18.
3
A dual experimental-theoretical perspective on ESPT photoacids and their challenges ahead.
Chem Sci. 2024 Dec 2;16(4):1560-1596. doi: 10.1039/d4sc07148d. eCollection 2025 Jan 22.
5
PKAD-2: New entries and expansion of functionalities of the database of experimentally measured pKa's of proteins.
J Comput Biophys Chem. 2023 Aug;22(5):515-524. doi: 10.1142/s2737416523500230. Epub 2023 Apr 25.
6
Activity Models of Key GPCR Families in the Central Nervous System: A Tool for Many Purposes.
J Chem Inf Model. 2023 Jun 12;63(11):3248-3262. doi: 10.1021/acs.jcim.2c01531. Epub 2023 May 31.
7
Pregnenolone sulfate analogues differentially modulate GABA receptor closed/desensitised states.
Br J Pharmacol. 2023 Oct;180(19):2482-2499. doi: 10.1111/bph.16143. Epub 2023 Jun 2.
9
Cysteine Oxidation in Proteins: Structure, Biophysics, and Simulation.
Biochemistry. 2022 Oct 18;61(20):2165-2176. doi: 10.1021/acs.biochem.2c00349. Epub 2022 Sep 26.
10
Structural Design and Synthesis of Novel Cyclic Peptide Inhibitors Targeting Transcription.
Life (Basel). 2022 Aug 28;12(9):1333. doi: 10.3390/life12091333.

本文引用的文献

1
pH-dependence of the specific binding of Cu(II) and Zn(II) ions to the amyloid-β peptide.
Biochem Biophys Res Commun. 2012 May 11;421(3):554-60. doi: 10.1016/j.bbrc.2012.04.043. Epub 2012 Apr 14.
2
Role of electrostatic interactions in binding of thrombin to the fibrinogen γ' chain.
Biochemistry. 2012 Apr 24;51(16):3445-50. doi: 10.1021/bi2016519. Epub 2012 Apr 15.
3
Protonation and anion binding control the kinetics of iron release from human transferrin.
J Phys Chem B. 2012 Mar 29;116(12):3795-807. doi: 10.1021/jp205879h. Epub 2012 Mar 19.
4
The distribution of ligand-binding pockets around protein-protein interfaces suggests a general mechanism for pocket formation.
Proc Natl Acad Sci U S A. 2012 Mar 6;109(10):3784-9. doi: 10.1073/pnas.1117768109. Epub 2012 Feb 21.
5
Deciphering the role of pH in the binding of ciprofloxacin hydrochloride to bovine serum albumin.
Phys Chem Chem Phys. 2012 Mar 28;14(12):4250-8. doi: 10.1039/c2cp00001f. Epub 2012 Feb 21.
7
Automated prediction of protein association rate constants.
Structure. 2011 Dec 7;19(12):1744-51. doi: 10.1016/j.str.2011.10.015.
9
Progress in the prediction of pKa values in proteins.
Proteins. 2011 Dec;79(12):3260-75. doi: 10.1002/prot.23189. Epub 2011 Oct 15.
10
glmS Riboswitch binding to the glucosamine-6-phosphate α-anomer shifts the pKa toward neutrality.
Biochemistry. 2011 Aug 23;50(33):7236-42. doi: 10.1021/bi200471c. Epub 2011 Jul 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验