Velarde Milko, Macieira Sofia, Hilberg Markus, Bröker Gerd, Tu Shang-Min, Golding Bernard T, Pierik Antonio J, Buckel Wolfgang, Messerschmidt Albrecht
Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany.
J Mol Biol. 2009 Aug 21;391(3):609-20. doi: 10.1016/j.jmb.2009.06.052. Epub 2009 Jun 24.
3-Methylitaconate-Delta-isomerase (Mii) participates in the nicotinate fermentation pathway of the anaerobic soil bacterium Eubacterium barkeri (order Clostridiales) by catalyzing the reversible conversion of (R)-3-methylitaconate (2-methylene-3-methylsuccinate) to 2,3-dimethylmaleate. The enzyme is also able to catalyze the isomerization of itaconate (methylenesuccinate) to citraconate (methylmaleate) with ca 10-fold higher K(m) but > 1000-fold lower k(cat). The gene mii from E. barkeri was cloned and expressed in Escherichia coli. The protein produced with a C-terminal Strep-tag exhibited the same specific activity as the wild-type enzyme. The crystal structure of Mii from E. barkeri has been solved at a resolution of 2.70 A. The asymmetric unit of the P2(1)2(1)2(1) unit cell with parameters a = 53.1 A, b = 142.3 A, and c = 228.4 A contains four molecules of Mii. The enzyme belongs to a group of isomerases with a common structural feature, the so-called diaminopimelate epimerase fold. The monomer of 380 amino acid residues has two topologically similar domains exhibiting an alpha/beta-fold. The active site is situated in a cleft between these domains. The four Mii molecules are arranged as a tetramer with 222 symmetry for the N-terminal domains. The C-terminal domains have different relative positions with respect to the N-terminal domains resulting in a closed conformation for molecule A and two distinct open conformations for molecules B and D. The C-terminal domain of molecule C is disordered. The Mii active site contains the putative catalytic residues Lys62 and Cys96, for which mechanistic roles are proposed based on a docking experiment of the Mii substrate complex. The active sites of Mii and the closely related PrpF, most likely a methylaconitate Delta-isomerase, have been compared. The overall architecture including the active-site Lys62, Cys96, His300, and Ser17 (Mii numbering) is similar. This positioning of (R)-3-methylitaconate allows Cys96 (as thiolate) to deprotonate C-3 and (as thiol) to donate a proton to the methylene carbon atom of the resulting allylic carbanion. Interestingly, the active site of isopentenyl diphosphate isomerase type I also contains a cysteine that cooperates with glutamate rather than lysine. It has been proposed that the initial step in this enzyme is a protonation generating a tertiary carbocation intermediate.
3-甲基衣康酸-δ-异构酶(Mii)通过催化(R)-3-甲基衣康酸(2-亚甲基-3-甲基琥珀酸)可逆转化为2,3-二甲基马来酸,参与厌氧土壤细菌巴氏真杆菌(梭菌目)的烟酸发酵途径。该酶还能够催化衣康酸(亚甲基琥珀酸)异构化为柠康酸(甲基马来酸),其米氏常数(K(m))高约10倍,但催化常数(k(cat))低>1000倍。克隆了巴氏真杆菌的mii基因并在大肠杆菌中表达。带有C端链霉亲和标签产生的蛋白质表现出与野生型酶相同的比活性。已解析出巴氏真杆菌Mii的晶体结构,分辨率为2.70 Å。P2(1)2(1)2(1)晶胞参数a = 53.1 Å、b = 142.3 Å和c = 228.4 Å的不对称单元包含四个Mii分子。该酶属于具有共同结构特征的异构酶组,即所谓的二氨基庚二酸差向异构酶折叠。由380个氨基酸残基组成的单体有两个拓扑结构相似的结构域,呈现α/β折叠。活性位点位于这些结构域之间的裂隙中。四个Mii分子以N端结构域具有222对称的形式排列成四聚体。C端结构域相对于N端结构域具有不同的相对位置,导致分子A呈封闭构象,分子B和D呈两种不同的开放构象。分子C的C端结构域无序。Mii活性位点包含推定的催化残基Lys62和Cys96,基于Mii底物复合物的对接实验对其作用机制提出了假设。已比较了Mii和密切相关的PrpF(最可能是甲基乌头酸δ-异构酶)的活性位点。包括活性位点Lys62、Cys96、His300和Ser17(Mii编号)在内的整体结构相似。(R)-3-甲基衣康酸的这种定位使Cys96(作为硫醇盐)使C-3去质子化,并(作为硫醇)向所得烯丙基碳负离子的亚甲基碳原子提供一个质子。有趣的是,I型异戊烯基二磷酸异构酶的活性位点也含有一个与谷氨酸而非赖氨酸协同作用的半胱氨酸。有人提出该酶的初始步骤是质子化产生叔碳正离子中间体。