Wang W, Kappock T J, Stubbe J, Ealick S E
Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA.
Biochemistry. 1998 Nov 10;37(45):15647-62. doi: 10.1021/bi981405n.
Glycinamide ribonucleotide synthetase (GAR-syn) catalyzes the second step of the de novo purine biosynthetic pathway; the conversion of phosphoribosylamine, glycine, and ATP to glycinamide ribonucleotide (GAR), ADP, and Pi. GAR-syn containing an N-terminal polyhistidine tag was expressed as the SeMet incorporated protein for crystallographic studies. In addition, the protein as isolated contains a Pro294Leu mutation. This protein was crystallized, and the structure solved using multiple-wavelength anomalous diffraction (MAD) phase determination and refined to 1.6 A resolution. GAR-syn adopts an alpha/beta structure that consists of four domains labeled N, A, B, and C. The N, A, and C domains are clustered to form a large central core structure whereas the smaller B domain is extended outward. Two hinge regions, which might readily facilitate interdomain movement, connect the B domain and the main core. A search of structural databases showed that the structure of GAR-syn is similar to D-alanine:D-alanine ligase, biotin carboxylase, and glutathione synthetase, despite low sequence similarity. These four enzymes all utilize similar ATP-dependent catalytic mechanisms even though they catalyze different chemical reactions. Another ATP-binding enzyme with low sequence similarity but unknown function, synapsin Ia, was also found to share high structural similarity with GAR-syn. Interestingly, the GAR-syn N domain shows similarity to the N-terminal region of glycinamide ribonucleotide transformylase and several dinucleotide-dependent dehydrogenases. Models of ADP and GAR binding were generated based on structure and sequence homology. On the basis of these models, the active site lies in a cleft between the large domain and the extended B domain. Most of the residues that facilitate ATP binding belong to the A or B domains. The N and C domains appear to be largely responsible for substrate specificity. The structure of GAR-syn allows modeling studies of possible channeling complexes with PPRP amidotransferase.
甘氨酰胺核糖核苷酸合成酶(GAR合成酶)催化从头嘌呤生物合成途径的第二步;将磷酸核糖胺、甘氨酸和ATP转化为甘氨酰胺核糖核苷酸(GAR)、ADP和无机磷酸。含有N端多组氨酸标签的GAR合成酶作为硒代甲硫氨酸掺入蛋白表达,用于晶体学研究。此外,分离得到的该蛋白含有Pro294Leu突变。该蛋白结晶后,采用多波长反常衍射(MAD)相位确定法解析其结构,并精修至1.6埃分辨率。GAR合成酶采用α/β结构,由标记为N、A、B和C的四个结构域组成。N、A和C结构域聚集形成一个大的中央核心结构,而较小的B结构域向外延伸。两个铰链区将B结构域与主要核心相连,这可能便于结构域间的移动。对结构数据库的搜索表明,尽管序列相似性较低,但GAR合成酶的结构与D-丙氨酸:D-丙氨酸连接酶、生物素羧化酶和谷胱甘肽合成酶相似。这四种酶尽管催化不同的化学反应,但都利用相似的ATP依赖性催化机制。另一种序列相似性低但功能未知的ATP结合酶突触素Ia,也被发现与GAR合成酶具有高度的结构相似性。有趣的是,GAR合成酶的N结构域与甘氨酰胺核糖核苷酸转甲酰基酶的N端区域以及几种二核苷酸依赖性脱氢酶相似。基于结构和序列同源性生成了ADP和GAR结合模型。基于这些模型,活性位点位于大结构域和延伸的B结构域之间的裂隙中。大多数促进ATP结合的残基属于A或B结构域。N和C结构域似乎在很大程度上决定了底物特异性。GAR合成酶的结构允许对与5-磷酸核糖焦磷酸酰胺转移酶可能的通道化复合物进行建模研究。