Zheng Weili, Chee Michael W L, Zagorodnov Vitali
School of Computer Engineering, Nanyang Technological University, Singapore.
Neuroimage. 2009 Oct 15;48(1):73-83. doi: 10.1016/j.neuroimage.2009.06.039. Epub 2009 Jun 25.
Smoothly varying and multiplicative intensity variations within MR images that are artifactual, can reduce the accuracy of automated brain segmentation. Fortunately, these can be corrected. Among existing correction approaches, the nonparametric non-uniformity intensity normalization method N3 (Sled, J.G., Zijdenbos, A.P., Evans, A.C., 1998. Nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans. Med. Imag. 17, 87-97.) is one of the most frequently used. However, at least one recent study (Boyes, R.G., Gunter, J.L., Frost, C., Janke, A.L., Yeatman, T., Hill, D.L.G., Bernstein, M.A., Thompson, P.M., Weiner, M.W., Schuff, N., Alexander, G.E., Killiany, R.J., DeCarli, C., Jack, C.R., Fox, N.C., 2008. Intensity non-uniformity correction using N3 on 3-T scanners with multichannel phased array coils. NeuroImage 39, 1752-1762.) suggests that its performance on 3 T scanners with multichannel phased-array receiver coils can be improved by optimizing a parameter that controls the smoothness of the estimated bias field. The present study not only confirms this finding, but additionally demonstrates the benefit of reducing the relevant parameter values to 30-50 mm (default value is 200 mm), on white matter surface estimation as well as the measurement of cortical and subcortical structures using FreeSurfer (Martinos Imaging Centre, Boston, MA). This finding can help enhance precision in studies where estimation of cerebral cortex thickness is critical for making inferences.
磁共振图像中人为产生的平滑变化且具有乘法性的强度变化会降低自动脑部分割的准确性。幸运的是,这些可以得到校正。在现有的校正方法中,非参数非均匀强度归一化方法N3(Sled, J.G., Zijdenbos, A.P., Evans, A.C., 1998年。用于自动校正MRI数据中强度非均匀性的非参数方法。《IEEE医学成像汇刊》17卷,87 - 97页)是最常用的方法之一。然而,至少有一项近期研究(Boyes, R.G., Gunter, J.L., Frost, C., Janke, A.L., Yeatman, T., Hill, D.L.G., Bernstein, M.A., Thompson, P.M., Weiner, M.W., Schuff, N., Alexander, G.E., Killiany, R.J., DeCarli, C., Jack, C.R., Fox, N.C., 2008年。在具有多通道相控阵线圈的3T扫描仪上使用N3进行强度非均匀性校正。《神经图像》39卷,1752 - 1762页)表明,通过优化控制估计偏差场平滑度的参数,可以提高其在具有多通道相控阵接收线圈的3T扫描仪上的性能。本研究不仅证实了这一发现,还额外证明了将相关参数值降低到30 - 50毫米(默认值为200毫米),对于使用FreeSurfer(马萨诸塞州波士顿马丁诺斯成像中心)进行白质表面估计以及皮质和皮质下结构测量的益处。这一发现有助于提高在脑皮质厚度估计对于进行推断至关重要的研究中的精度。