Chao Wen-Hung, Chen You-Yin, Cho Chien-Wen, Lin Sheng-Huang, Shih Yen-Yu I, Tsang Siny
Department of Electrical and Control Engineering, National Chiao Tung University, Taiwan, Republic of China.
J Neurosci Methods. 2008 Nov 15;175(2):206-17. doi: 10.1016/j.jneumeth.2008.08.017. Epub 2008 Aug 20.
The purpose of this study was to improve the accuracy rate of brain tissue classification in magnetic resonance (MR) imaging using a boosted decision tree segmentation algorithm. Herein, we examined simulated phantom MR (SPMR) images, simulated brain MR (SBMR) images, and a real data. The accuracy rate and k index when classifying brain tissues as gray matter (GM), white matter (WM), or cerebral-spinal fluid (CSF) were better when using the boosted decision tree algorithm combined with a fuzzy threshold than when using a statistical region-growing (SRG) algorithm [Wolf I, Vetter M, Wegner I, Böttger T, Nolden M, Schöbinger M, et al. The medical imaging interaction toolkit. Med Imag Anal 2005;9:594-604] and an adaptive segmentation (AS) algorithm [Wells WM, Grimson WEL, Kikinis R, Jolesz FA. Adaptive segmentation of MRI data. IEEE Trans Med Imag 1996;15:429-42]. The segmentation performance when using this algorithm on real data from brain MR images was also better than those of SRG and AS algorithm. Segmentation of a real data using the boosted decision tree produced particularly clear brain MR imaging and permitted more accurate brain tissue segmentation. In conclusion, a decision tree with appropriate boost trials successfully improved the accuracy rate of MR brain tissue segmentation.
本研究的目的是使用增强决策树分割算法提高磁共振(MR)成像中脑组织分类的准确率。在此,我们检查了模拟体模MR(SPMR)图像、模拟脑MR(SBMR)图像和真实数据。在将脑组织分类为灰质(GM)、白质(WM)或脑脊液(CSF)时,与使用统计区域生长(SRG)算法[Wolf I, Vetter M, Wegner I, Böttger T, Nolden M, Schöbinger M, et al. The medical imaging interaction toolkit. Med Imag Anal 2005;9:594 - 604]和自适应分割(AS)算法[Wells WM, Grimson WEL, Kikinis R, Jolesz FA. Adaptive segmentation of MRI data. IEEE Trans Med Imag 1996;15:429 - 42]相比,使用结合模糊阈值的增强决策树算法时,准确率和k指数更高。在脑MR图像的真实数据上使用该算法时的分割性能也优于SRG和AS算法。使用增强决策树对真实数据进行分割可产生特别清晰的脑MR成像,并能实现更准确的脑组织分割。总之,进行适当增强试验的决策树成功提高了MR脑组织分割的准确率。