Sousa Kaline S, Silva Filho Edson C, Airoldi Claudio
Institute of Chemistry, University of Campinas, PO Box 6154, 13084-971 Campinas, São Paulo, Brazil.
Carbohydr Res. 2009 Sep 8;344(13):1716-23. doi: 10.1016/j.carres.2009.05.028. Epub 2009 Jun 6.
Chitosan (Ch) was chemically modified with ethylenesulfide (Es) under solvent-free conditions to give (ChEs), displaying a high content of thiol groups due to opening of the three member cyclic reagent. Elemental analysis showed a decrease in nitrogen content. This result indicated the incorporation of two ethylenesulfide molecules for each unit of the polymeric structure of the precursor biopolymer. Infrared spectroscopy, thermogravimetry, and (13)C NMR in the solid state demonstrated the effectiveness of the reaction, with signals at 30 ppm for ChEs due to the change in the methylene group environment. Divalent metal uptake by chemically modified biopolymer gave the order Cu>Ni>Co>Zn, reflecting the corresponding acidity of these cations in bonding to the sulfur and the basic nitrogen atoms available on the pendant chains. The equilibrium data were fitted to Freundlich, Temkin, and Langmuir models. The maximum monolayer adsorption capacity for the cations was found to be 1.54+/-0.02, 1.25+/-0.03, 1.13+/-0.01, and 0.83+/-0.03 mmol g(-1), respectively. The Langmuir model best explained the cation-sulfur bond interactions at the solid-liquid interface. The thermodynamics for these interactions gave exothermic enthalpic values of -43.02+/-0.03, -28.72+/-0.02, -26.27+/-0.04, and -17.32+/-0.02 kJ mol(-1), respectively. The spontaneity of the systems is given by negative Gibbs free energies of -31.2+/-0.1, -32.7+/-0.1, -31.7+/-0.1, and -32.2+/-0.1 kJ mol(-1), respectively, in spite of the unfavorable negative entropic values of -39+/-1, -13+/-1, -18+/-1, and -49+/-1 J K(-1)mol(-1) due to solvent ordering in the course of complexation. This newly synthesized biopolymer is presented as a chemically useful material for cation removal from aqueous solution.
壳聚糖(Ch)在无溶剂条件下用乙硫醚(Es)进行化学改性,得到(ChEs),由于三元环试剂的开环,其硫醇基团含量很高。元素分析表明氮含量降低。该结果表明,在前体生物聚合物的每个聚合物结构单元中引入了两个乙硫醚分子。红外光谱、热重分析和固态(13)C NMR证明了反应的有效性,由于亚甲基环境的变化,ChEs在30 ppm处有信号。化学改性生物聚合物对二价金属的吸收顺序为Cu>Ni>Co>Zn,反映了这些阳离子与侧链上可用的硫和碱性氮原子结合时相应的酸度。平衡数据符合Freundlich、Temkin和Langmuir模型。发现阳离子的最大单层吸附容量分别为1.54±0.02、1.25±0.03、1.13±0.01和0.83±0.03 mmol g(-1)。Langmuir模型最能解释固液界面处的阳离子-硫键相互作用。这些相互作用的热力学分别给出了-43.02±0.03、-28.72±0.02、-26.27±0.04和-17.32±0.02 kJ mol(-1)的放热焓值。尽管在络合过程中由于溶剂有序化导致熵值为-39±1、-13±1、-18±1和-49±1 J K(-1)mol(-1)为不利的负值,但系统的自发性分别由-31.2±0.1、-32.7±0.1、-31.7±0.1和-32.2±0.1 kJ mol(-1)的负吉布斯自由能给出。这种新合成的生物聚合物是一种从水溶液中去除阳离子的化学有用材料。