Asai Hirohide, Hirano Makito, Shimada Keiji, Kiriyama Takao, Furiya Yoshiko, Ikeda Masanori, Iwamoto Takaaki, Mori Toshio, Nishinaka Kazuto, Konishi Noboru, Udaka Fukashi, Ueno Satoshi
Department of Neurology, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan.
Hum Mol Genet. 2009 Oct 1;18(19):3533-43. doi: 10.1093/hmg/ddp298. Epub 2009 Jun 26.
Spinocerebellar ataxia type 14 (SCA14) is an autosomal dominant disease caused by mutations in the gene encoding protein kinase C gamma (PKC gamma). We report an SCA14 family with a novel deletion of a termination-codon-containing region, resulting in a missense change and a C-terminal 13-amino-acid extension with increased kinase activity. Notably, one patient with a severe phenotype is the first homozygote for the mutation causing SCA14. We show the novel molecular consequences of increased kinase activities of mutants: aprataxin (APTX), a DNA repair protein causative for autosomal recessive ataxia, was found to be a preferential substrate of mutant PKC gamma, and phosphorylation inhibited its nuclear entry. The phosphorylated residue was Thr111, located adjacent to the nuclear localization signal, and disturbed interactions with importin alpha, a nuclear import adaptor. Decreased nuclear APTX increased oxidative stress-induced DNA damage and cell death. Phosphorylation-resistant APTX, kinase inhibitors, and antioxidants may be therapeutic options for SCA14.
14型脊髓小脑共济失调(SCA14)是一种常染色体显性疾病,由编码蛋白激酶Cγ(PKCγ)的基因突变引起。我们报告了一个SCA14家系,其存在一个包含终止密码子区域的新型缺失,导致错义改变和C末端13个氨基酸的延伸,激酶活性增加。值得注意的是,一名具有严重表型的患者是导致SCA14的突变的首个纯合子。我们展示了突变体激酶活性增加的新分子后果: aprataxin(APTX),一种导致常染色体隐性共济失调的DNA修复蛋白,被发现是突变型PKCγ的优先底物,磷酸化抑制其核内进入。磷酸化位点是Thr111,位于核定位信号附近,干扰了与核输入衔接蛋白importinα的相互作用。核内APTX减少增加了氧化应激诱导的DNA损伤和细胞死亡。抗磷酸化的APTX、激酶抑制剂和抗氧化剂可能是SCA14的治疗选择。