Suppr超能文献

一种用于检测时间周期性模式中断的振荡电路。

An oscillatory circuit underlying the detection of disruptions in temporally-periodic patterns.

作者信息

Gao Juan, Schwartz Greg, Berry Michael J, Holmes Philip

机构信息

Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA.

出版信息

Network. 2009;20(2):106-35. doi: 10.1080/09548980902991705.

Abstract

Neurons in diverse brain areas can respond to the interruption of a regular stimulus pattern by firing bursts of spikes. Here we describe a simple model, which permits such responses to periodic stimuli over a substantial frequency range. Focusing on the omitted stimulus response (OSR) in isolated retinas subjected to periodic patterns of dark flashes, we develop a biophysically-realistic model which accounts for resonances in ON bipolar cells. The bipolar cell terminal contains an LRC oscillator whose inductance is modulated by a transient calcium concentration, thus adjusting its resonant frequency to approximately match that of the stimulus. The model reproduces ganglion cell outputs, which sum the ON and OFF bipolar pathways, and it responds to omitted flashes with approximately constant latencies, as observed experimentally.

摘要

不同脑区的神经元能够通过发放一串脉冲来对规则刺激模式的中断做出反应。在此,我们描述了一个简单模型,该模型能够在相当大的频率范围内对周期性刺激做出此类反应。聚焦于接受周期性暗闪光模式刺激的离体视网膜中的遗漏刺激反应(OSR),我们构建了一个生物物理现实模型,该模型考虑了ON双极细胞中的共振现象。双极细胞终末包含一个LRC振荡器,其电感由瞬时钙浓度调制,从而将其共振频率调整到大致与刺激频率相匹配。该模型再现了对ON和OFF双极通路进行求和的神经节细胞输出,并且如实验观察到的那样,它以大致恒定的潜伏期对遗漏闪光做出反应。

相似文献

2
Dark-adapted response threshold of OFF ganglion cells is not set by OFF bipolar cells in the mouse retina.
J Neurophysiol. 2012 May;107(10):2649-59. doi: 10.1152/jn.01202.2011. Epub 2012 Feb 15.
3
The neural circuit mechanisms underlying the retinal response to motion reversal.
J Neurosci. 2014 Nov 19;34(47):15557-75. doi: 10.1523/JNEUROSCI.1460-13.2014.
4
Rapid neural coding in the retina with relative spike latencies.
Science. 2008 Feb 22;319(5866):1108-11. doi: 10.1126/science.1149639.
5
Sophisticated temporal pattern recognition in retinal ganglion cells.
J Neurophysiol. 2008 Apr;99(4):1787-98. doi: 10.1152/jn.01025.2007. Epub 2008 Feb 13.
6
Complex temporal response patterns with a simple retinal circuit.
J Neurophysiol. 2008 Aug;100(2):1087-97. doi: 10.1152/jn.90527.2008. Epub 2008 Jun 25.
7
How Does the Inner Retinal Network Shape the Ganglion Cells Receptive Field? A Computational Study.
Neural Comput. 2024 May 10;36(6):1041-1083. doi: 10.1162/neco_a_01663.
8
Distinct expressions of contrast gain control in parallel synaptic pathways converging on a retinal ganglion cell.
J Physiol. 2008 Nov 15;586(22):5487-502. doi: 10.1113/jphysiol.2008.156224. Epub 2008 Oct 2.
9
Encoding surprise by retinal ganglion cells.
PLoS Comput Biol. 2024 Apr 17;20(4):e1011965. doi: 10.1371/journal.pcbi.1011965. eCollection 2024 Apr.
10
Diversity of Ganglion Cell Responses to Saccade-Like Image Shifts in the Primate Retina.
J Neurosci. 2023 Jul 19;43(29):5319-5339. doi: 10.1523/JNEUROSCI.1561-22.2023. Epub 2023 Jun 20.

引用本文的文献

1
Temporal pattern recognition in retinal ganglion cells is mediated by dynamical inhibitory synapses.
Nat Commun. 2024 Jul 20;15(1):6118. doi: 10.1038/s41467-024-50506-7.
2
Interpreting the retinal neural code for natural scenes: From computations to neurons.
Neuron. 2023 Sep 6;111(17):2742-2755.e4. doi: 10.1016/j.neuron.2023.06.007. Epub 2023 Jul 13.
4
Poststimulus response characteristics of the human cone flicker electroretinogram.
Vis Neurosci. 2013 Jul;30(4):147-52. doi: 10.1017/S0952523813000333. Epub 2013 Sep 10.
5
Responses of recurrent nets of asymmetric ON and OFF cells.
J Biol Phys. 2011 Mar;37(2):189-212. doi: 10.1007/s10867-010-9207-3. Epub 2010 Nov 20.
6
Network oscillations in rod-degenerated mouse retinas.
J Neurosci. 2011 Feb 9;31(6):2280-91. doi: 10.1523/JNEUROSCI.4238-10.2011.
7
Can you hear me now? Understanding vertebrate middle ear development.
Front Biosci (Landmark Ed). 2011 Jan 1;16(5):1675-92. doi: 10.2741/3813.

本文引用的文献

1
Complex temporal response patterns with a simple retinal circuit.
J Neurophysiol. 2008 Aug;100(2):1087-97. doi: 10.1152/jn.90527.2008. Epub 2008 Jun 25.
2
Sophisticated temporal pattern recognition in retinal ganglion cells.
J Neurophysiol. 2008 Apr;99(4):1787-98. doi: 10.1152/jn.01025.2007. Epub 2008 Feb 13.
3
Synchronized firing among retinal ganglion cells signals motion reversal.
Neuron. 2007 Sep 20;55(6):958-69. doi: 10.1016/j.neuron.2007.07.042.
4
Different mechanisms generate maintained activity in ON and OFF retinal ganglion cells.
J Neurosci. 2007 May 30;27(22):5994-6005. doi: 10.1523/JNEUROSCI.0130-07.2007.
5
Detection and prediction of periodic patterns by the retina.
Nat Neurosci. 2007 May;10(5):552-4. doi: 10.1038/nn1887. Epub 2007 Apr 22.
6
Retinal ganglion cells can rapidly change polarity from Off to On.
PLoS Biol. 2007 Mar;5(3):e65. doi: 10.1371/journal.pbio.0050065.
8
Selectivity for multiple stimulus features in retinal ganglion cells.
J Neurophysiol. 2006 Nov;96(5):2724-38. doi: 10.1152/jn.00995.2005. Epub 2006 Aug 16.
10
Retinal bipolar cell types differ in their inventory of ion channels.
Vis Neurosci. 2006 Mar-Apr;23(2):143-54. doi: 10.1017/S0952523806232048.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验