Suppr超能文献

对Erv26p的分子剖析确定了可分离的货物结合和衣被蛋白分选活性。

Molecular dissection of Erv26p identifies separable cargo binding and coat protein sorting activities.

作者信息

Bue Catherine A, Barlowe Charles

机构信息

Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA.

出版信息

J Biol Chem. 2009 Sep 4;284(36):24049-60. doi: 10.1074/jbc.M109.022590. Epub 2009 Jul 1.

Abstract

Efficient export of secretory alkaline phosphatase (ALP) from the endoplasmic reticulum depends on the conserved transmembrane sorting adaptor Erv26p/Svp26p. In the present study we investigated the mechanism by which Erv26p couples pro-ALP to the coat protein complex II (COPII) export machinery. Site-specific mutations were introduced into Erv26p, and mutant proteins were assessed in cell-free assays that monitor interactions with pro-ALP cargo and packaging into COPII vesicles. Mutations in the second and third loop domains of Erv26p inhibited interaction with pro-ALP, whereas mutations in the C-terminal tail sequence influenced incorporation into COPII vesicles and subcellular distribution. Interestingly mutations in the second loop domain also influenced Erv26p homodimer associations. Finally we demonstrated that Ktr3p, a cis-Golgi-localized mannosyltransferase, also relies on Erv26p for efficient COPII-dependent export from the endoplasmic reticulum. These findings demonstrate that Erv26p acts as a protein sorting adaptor for a variety of Type II transmembrane cargo proteins and requires domain-specific interactions with both cargo and coat subunits to promote efficient secretory protein transport.

摘要

分泌性碱性磷酸酶(ALP)从内质网的高效输出依赖于保守的跨膜分选衔接蛋白Erv26p/Svp26p。在本研究中,我们探究了Erv26p将前体ALP与II型被膜蛋白复合物(COPII)输出机制偶联的机制。将位点特异性突变引入Erv26p,并在无细胞测定中评估突变蛋白,该测定监测与前体ALP货物的相互作用以及包装到COPII囊泡中的情况。Erv26p的第二个和第三个环结构域中的突变抑制了与前体ALP的相互作用,而C末端尾部序列中的突变影响了COPII囊泡的掺入和亚细胞分布。有趣的是,第二个环结构域中的突变也影响了Erv26p同二聚体的缔合。最后,我们证明了顺式高尔基体定位的甘露糖基转移酶Ktr3p也依赖于Erv26p从内质网进行高效的COPII依赖性输出。这些发现表明,Erv26p作为多种II型跨膜货物蛋白的蛋白质分选衔接蛋白,并且需要与货物和被膜亚基进行结构域特异性相互作用以促进高效的分泌蛋白运输。

相似文献

1
Molecular dissection of Erv26p identifies separable cargo binding and coat protein sorting activities.
J Biol Chem. 2009 Sep 4;284(36):24049-60. doi: 10.1074/jbc.M109.022590. Epub 2009 Jul 1.
2
Erv26p-dependent export of alkaline phosphatase from the ER requires lumenal domain recognition.
Traffic. 2009 Aug;10(8):1006-18. doi: 10.1111/j.1600-0854.2009.00936.x. Epub 2009 Apr 29.
3
Erv26p directs pro-alkaline phosphatase into endoplasmic reticulum-derived coat protein complex II transport vesicles.
Mol Biol Cell. 2006 Nov;17(11):4780-9. doi: 10.1091/mbc.e06-05-0455. Epub 2006 Sep 6.
4
Svp26 facilitates ER exit of mannosyltransferases Mnt2 and Mnt3 in Saccharomyces cerevisiae.
J Gen Appl Microbiol. 2019 Sep 14;65(4):180-187. doi: 10.2323/jgam.2018.09.001. Epub 2019 Jan 31.
5
Both Svp26 and Mnn6 are required for the efficient ER exit of Mnn4 in Saccharomyces cerevisiae.
J Gen Appl Microbiol. 2019 Dec 19;65(5):215-224. doi: 10.2323/jgam.2018.10.002. Epub 2019 Mar 6.
6
Erv14p directs a transmembrane secretory protein into COPII-coated transport vesicles.
Mol Biol Cell. 2002 Mar;13(3):880-91. doi: 10.1091/mbc.01-10-0499.
7
Making COPII coats.
Cell. 2007 Jun 29;129(7):1251-2. doi: 10.1016/j.cell.2007.06.015.
8
Sorting signals can direct receptor-mediated export of soluble proteins into COPII vesicles.
Nat Cell Biol. 2004 Dec;6(12):1189-94. doi: 10.1038/ncb1195. Epub 2004 Oct 31.
9
Combinatorial multivalent interactions drive cooperative assembly of the COPII coat.
J Cell Biol. 2020 Nov 2;219(11). doi: 10.1083/jcb.202007135.
10
TFG regulates inner COPII coat recruitment to facilitate anterograde secretory protein transport.
Mol Biol Cell. 2024 Aug 1;35(8):ar113. doi: 10.1091/mbc.E24-06-0282. Epub 2024 Jul 10.

引用本文的文献

1
JAGN1, tetraspanins, and Erv proteins: is common topology indicative of common function in cargo sorting?
Am J Physiol Cell Physiol. 2020 Oct 1;319(4):C667-C674. doi: 10.1152/ajpcell.00436.2019. Epub 2020 Aug 12.
3
Folding and Misfolding of Human Membrane Proteins in Health and Disease: From Single Molecules to Cellular Proteostasis.
Chem Rev. 2019 May 8;119(9):5537-5606. doi: 10.1021/acs.chemrev.8b00532. Epub 2019 Jan 4.
5
Two novel effectors of trafficking and maturation of the yeast plasma membrane H -ATPase.
Traffic. 2017 Oct;18(10):672-682. doi: 10.1111/tra.12503. Epub 2017 Aug 16.
6
Identification of rice cornichon as a possible cargo receptor for the Golgi-localized sodium transporter OsHKT1;3.
J Exp Bot. 2015 May;66(9):2733-48. doi: 10.1093/jxb/erv069. Epub 2015 Mar 7.
7
Distinct adaptor proteins assist exit of Kre2-family proteins from the yeast ER.
Biol Open. 2014 Mar 15;3(3):209-24. doi: 10.1242/bio.20146312.
8
Isoform-selective oligomer formation of Saccharomyces cerevisiae p24 family proteins.
J Biol Chem. 2013 Dec 27;288(52):37057-70. doi: 10.1074/jbc.M113.518340. Epub 2013 Nov 11.
9
Vesicle-mediated export from the ER: COPII coat function and regulation.
Biochim Biophys Acta. 2013 Nov;1833(11):2464-72. doi: 10.1016/j.bbamcr.2013.02.003. Epub 2013 Feb 15.
10
Secretory protein biogenesis and traffic in the early secretory pathway.
Genetics. 2013 Feb;193(2):383-410. doi: 10.1534/genetics.112.142810.

本文引用的文献

1
Erv26p-dependent export of alkaline phosphatase from the ER requires lumenal domain recognition.
Traffic. 2009 Aug;10(8):1006-18. doi: 10.1111/j.1600-0854.2009.00936.x. Epub 2009 Apr 29.
2
Identification of ERGIC-53 as an intracellular transport receptor of alpha1-antitrypsin.
J Cell Biol. 2008 Feb 25;180(4):705-12. doi: 10.1083/jcb.200709100. Epub 2008 Feb 18.
3
4
The sugar-binding ability of ERGIC-53 is enhanced by its interaction with MCFD2.
Blood. 2008 Feb 15;111(4):1972-9. doi: 10.1182/blood-2007-06-097022. Epub 2007 Dec 3.
5
Mechanisms of COPII vesicle formation and protein sorting.
FEBS Lett. 2007 May 22;581(11):2076-82. doi: 10.1016/j.febslet.2007.01.091. Epub 2007 Feb 14.
6
The insulin and EGF receptor structures: new insights into ligand-induced receptor activation.
Trends Biochem Sci. 2007 Mar;32(3):129-37. doi: 10.1016/j.tibs.2007.01.001. Epub 2007 Feb 5.
7
The COPII cage: unifying principles of vesicle coat assembly.
Nat Rev Mol Cell Biol. 2006 Oct;7(10):727-38. doi: 10.1038/nrm2025.
8
Erv26p directs pro-alkaline phosphatase into endoplasmic reticulum-derived coat protein complex II transport vesicles.
Mol Biol Cell. 2006 Nov;17(11):4780-9. doi: 10.1091/mbc.e06-05-0455. Epub 2006 Sep 6.
9
Oligomerization and interacellular localization of the glycoprotein receptor ERGIC-53 is independent of disulfide bonds.
J Mol Biol. 2005 Dec 2;354(3):556-68. doi: 10.1016/j.jmb.2005.09.077. Epub 2005 Oct 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验