Suppr超能文献

通过紫外可见光谱法和多元分类技术测定香料中苏丹红I-II-II-IV染料的掺假情况。

Determining the adulteration of spices with Sudan I-II-II-IV dyes by UV-visible spectroscopy and multivariate classification techniques.

作者信息

Di Anibal Carolina V, Odena Marta, Ruisánchez Itziar, Callao M Pilar

机构信息

Department of Analytical and Organic Chemistry, Rovira i Virgili University, Marcel.lí Domingo s/n Campus Sescelades, E-43007 Tarragona, Spain.

出版信息

Talanta. 2009 Aug 15;79(3):887-92. doi: 10.1016/j.talanta.2009.05.023. Epub 2009 May 22.

Abstract

We propose a very simple and fast method for detecting Sudan dyes (I, II, III and IV) in commercial spices, based on characterizing samples through their UV-visible spectra and using multivariate classification techniques to establish classification rules. We applied three classification techniques: K-Nearest Neighbour (KNN), Soft Independent Modelling of Class Analogy (SIMCA) and Partial Least Squares Discriminant Analysis (PLS-DA). A total of 27 commercial spice samples (turmeric, curry, hot paprika and mild paprika) were analysed by chromatography (HPLC-DAD) to check that they were free of Sudan dyes. These samples were then spiked with Sudan dyes (I, II, III and IV) up to a concentration of 5 mg L(-1). Our final data set consisted of 135 samples distributed in five classes: samples without Sudan dyes, samples spiked with Sudan I, samples spiked with Sudan II, samples spiked with Sudan III and samples spiked with Sudan IV. Classification results were good and satisfactory using the classification techniques mentioned above: 99.3%, 96.3% and 90.4% of correct classification with PLS-DA, KNN and SIMCA, respectively. It should be pointed out that with SIMCA, there are no real classification errors as no samples were assigned to the wrong class: they were just not assigned to any of the pre-defined classes.

摘要

我们提出了一种非常简单快速的方法,用于检测市售香料中的苏丹红染料(I、II、III和IV),该方法基于通过紫外可见光谱对样品进行表征,并使用多元分类技术来建立分类规则。我们应用了三种分类技术:K近邻算法(KNN)、类类比软独立建模(SIMCA)和偏最小二乘判别分析(PLS-DA)。通过色谱法(HPLC-DAD)对总共27个市售香料样品(姜黄、咖喱、甜辣椒粉和淡辣椒粉)进行了分析,以检查它们是否不含苏丹红染料。然后向这些样品中添加苏丹红染料(I、II、III和IV),浓度最高达到5 mg L⁻¹。我们的最终数据集由135个样品组成,分为五类:不含苏丹红染料的样品、添加苏丹红I的样品、添加苏丹红II的样品、添加苏丹红III的样品和添加苏丹红IV的样品。使用上述分类技术得到的分类结果良好且令人满意:PLS-DA、KNN和SIMCA的正确分类率分别为99.3%、96.3%和90.4%。需要指出的是,对于SIMCA,不存在真正的分类错误,因为没有样品被误分到错误的类别:只是它们没有被分到任何一个预定义的类别中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验