Roberts Emma M, Newson Michael J F, Pope George R, Landgraf Rainer, Lolait Stephen J, O'Carroll Anne-Marie
Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol BS1 3NY, UK.
J Endocrinol. 2009 Sep;202(3):453-62. doi: 10.1677/JOE-09-0134. Epub 2009 Jul 3.
The apelinergic system, comprised of apelin and its G protein-coupled receptor (APJ; APLNR as given in MGI Database), is expressed within key regions of the central nervous system associated with arginine vasopressin (AVP) synthesis and release as well as in structures involved in the control of drinking behaviour, including the magnocellular neurones of the hypothalamus, circumventricular organs, and the pituitary gland. This localisation is indicative of a possible functional role in fluid homeostasis. We investigated a role for APJ in the regulation of fluid balance using mice deficient for the receptor. Male APJ wild-type and knockout (APJ(-/-)) mice were housed in metabolic cages to allow determination of water intake and urine volume and osmolality. When provided with free access to water, APJ(-/-) mice drank significantly less than wild-types, while their urine volume and osmolality did not differ. Water deprivation for 24 h significantly reduced urine volume and increased osmolality in wild-type but not in APJ(-/-) mice. Baseline plasma AVP concentration increased comparably in both wild-type and APJ(-/-) mice following dehydration; however, APJ(-/-) mice were unable to concentrate their urine to the same extent as wild-type mice in response to the V2 agonist desmopressin. Analysis of c-fos (Fos as given in MGI Database) mRNA expression in response to dehydration showed attenuation of expression within the subfornical organ, accentuated expression in the paraventricular nucleus, but no differences in expression in the supraoptic nucleus nor median pre-optic nucleus in APJ(-/-) mice compared with wild-type. These findings demonstrate a physiological role for APJ in mechanisms of water intake and fluid retention and suggest an anti-diuretic effect of apelin in vivo.
阿片肽系统由阿片肽及其G蛋白偶联受体(APJ;MGI数据库中称为APLNR)组成,在与精氨酸加压素(AVP)合成和释放相关的中枢神经系统关键区域以及参与控制饮水行为的结构中表达,包括下丘脑的大细胞神经元、室周器官和垂体。这种定位表明其在体液平衡中可能具有功能作用。我们使用该受体缺陷型小鼠研究了APJ在液体平衡调节中的作用。将雄性APJ野生型和基因敲除(APJ(-/-))小鼠饲养在代谢笼中,以测定水摄入量、尿量和尿渗透压。当自由饮水时,APJ(-/-)小鼠的饮水量明显低于野生型小鼠,而它们的尿量和尿渗透压没有差异。野生型小鼠缺水24小时后尿量显著减少,尿渗透压升高,而APJ(-/-)小鼠则没有。脱水后,野生型和APJ(-/-)小鼠的基线血浆AVP浓度均有类似升高;然而,APJ(-/-)小鼠在使用V2激动剂去氨加压素后无法像野生型小鼠那样浓缩尿液。对脱水反应中c-fos(MGI数据库中称为Fos)mRNA表达的分析表明,与野生型相比,APJ(-/-)小鼠穹窿下器官内的表达减弱,室旁核中的表达增强,但视上核和视前正中核中的表达没有差异。这些发现证明了APJ在水摄入和液体潴留机制中的生理作用,并提示阿片肽在体内具有抗利尿作用。