Department of Neurosurgery, Geffen School of Medicine, University of California, Los Angeles, USA.
Med Biol Eng Comput. 2009 Sep;47(9):967-77. doi: 10.1007/s11517-009-0505-5. Epub 2009 Jul 4.
Following recent studies, the automatic analysis of intracranial pressure (ICP) pulses appears to be a promising tool for forecasting critical intracranial and cerebrovascular pathophysiological variations during the management of many disorders. A pulse analysis framework has been recently developed to automatically extract morphological features of ICP pulses. The algorithm is able to enhance the quality of ICP signals, to segment ICP pulses, and to designate the locations of the three ICP sub-peaks in a pulse. This paper extends this algorithm by utilizing machine learning techniques to replace Gaussian priors used in the peak designation process with more versatile regression models. The experimental evaluations are conducted on a database of ICP signals built from 700 h of recordings from 64 neurosurgical patients. A comparative analysis of different state-of-the-art regression analysis methods is conducted and the best approach is then compared to the original pulse analysis algorithm. The results demonstrate a significant improvement in terms of accuracy in favor of our regression-based recognition framework. It reaches an average peak designation accuracy of 99% using a kernel spectral regression against 93% for the original algorithm.
最近的研究表明,颅内压(ICP)脉冲的自动分析似乎是一种很有前途的工具,可以在许多疾病的治疗过程中预测关键的颅内和脑血管病理生理变化。最近已经开发出一种脉冲分析框架,用于自动提取 ICP 脉冲的形态特征。该算法能够增强 ICP 信号的质量,对 ICP 脉冲进行分段,并指定脉冲中三个 ICP 次波峰的位置。本文通过利用机器学习技术,将用于峰值指定过程中的高斯先验替换为更通用的回归模型,对该算法进行了扩展。实验评估是在一个由 64 名神经外科患者的 700 小时记录构建的 ICP 信号数据库上进行的。对不同的最先进的回归分析方法进行了比较分析,然后将最佳方法与原始的脉冲分析算法进行了比较。结果表明,我们的基于回归的识别框架在准确性方面有了显著提高。它使用核谱回归达到了平均 99%的峰值指定准确率,而原始算法为 93%。