Suppr超能文献

在脉动压力信号中进行峰值指定的回归分析。

Regression analysis for peak designation in pulsatile pressure signals.

机构信息

Department of Neurosurgery, Geffen School of Medicine, University of California, Los Angeles, USA.

出版信息

Med Biol Eng Comput. 2009 Sep;47(9):967-77. doi: 10.1007/s11517-009-0505-5. Epub 2009 Jul 4.

Abstract

Following recent studies, the automatic analysis of intracranial pressure (ICP) pulses appears to be a promising tool for forecasting critical intracranial and cerebrovascular pathophysiological variations during the management of many disorders. A pulse analysis framework has been recently developed to automatically extract morphological features of ICP pulses. The algorithm is able to enhance the quality of ICP signals, to segment ICP pulses, and to designate the locations of the three ICP sub-peaks in a pulse. This paper extends this algorithm by utilizing machine learning techniques to replace Gaussian priors used in the peak designation process with more versatile regression models. The experimental evaluations are conducted on a database of ICP signals built from 700 h of recordings from 64 neurosurgical patients. A comparative analysis of different state-of-the-art regression analysis methods is conducted and the best approach is then compared to the original pulse analysis algorithm. The results demonstrate a significant improvement in terms of accuracy in favor of our regression-based recognition framework. It reaches an average peak designation accuracy of 99% using a kernel spectral regression against 93% for the original algorithm.

摘要

最近的研究表明,颅内压(ICP)脉冲的自动分析似乎是一种很有前途的工具,可以在许多疾病的治疗过程中预测关键的颅内和脑血管病理生理变化。最近已经开发出一种脉冲分析框架,用于自动提取 ICP 脉冲的形态特征。该算法能够增强 ICP 信号的质量,对 ICP 脉冲进行分段,并指定脉冲中三个 ICP 次波峰的位置。本文通过利用机器学习技术,将用于峰值指定过程中的高斯先验替换为更通用的回归模型,对该算法进行了扩展。实验评估是在一个由 64 名神经外科患者的 700 小时记录构建的 ICP 信号数据库上进行的。对不同的最先进的回归分析方法进行了比较分析,然后将最佳方法与原始的脉冲分析算法进行了比较。结果表明,我们的基于回归的识别框架在准确性方面有了显著提高。它使用核谱回归达到了平均 99%的峰值指定准确率,而原始算法为 93%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/537b/2734262/19b6908492ba/11517_2009_505_Fig1_HTML.jpg

相似文献

1
Regression analysis for peak designation in pulsatile pressure signals.
Med Biol Eng Comput. 2009 Sep;47(9):967-77. doi: 10.1007/s11517-009-0505-5. Epub 2009 Jul 4.
2
Nonlinear regression for sub-peak detection of intracranial pressure signals.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:5411-4. doi: 10.1109/IEMBS.2008.4650438.
3
A subspace decomposition approach toward recognizing valid pulsatile signals.
Physiol Meas. 2009 Nov;30(11):1211-25. doi: 10.1088/0967-3334/30/11/006. Epub 2009 Oct 1.
4
Morphological clustering and analysis of continuous intracranial pressure.
IEEE Trans Biomed Eng. 2009 Mar;56(3):696-705. doi: 10.1109/TBME.2008.2008636. Epub 2008 Nov 7.
5
Robust peak recognition in intracranial pressure signals.
Biomed Eng Online. 2010 Oct 19;9:61. doi: 10.1186/1475-925X-9-61.
6
Inter-subject correlation exists between morphological metrics of cerebral blood flow velocity and intracranial pressure pulses.
Neurocrit Care. 2011 Apr;14(2):229-37. doi: 10.1007/s12028-010-9471-x. Epub 2010 Dec 7.
7
Algorithm for automatic beat detection of cardiovascular pressure signals.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:2594-7. doi: 10.1109/IEMBS.2008.4649731.
8
Single pulse analysis of intracranial pressure for a hydrocephalus implant.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:3939-42. doi: 10.1109/EMBC.2012.6346828.
9
Association between ICP pulse waveform morphology and ICP B waves.
Acta Neurochir Suppl. 2012;114:29-34. doi: 10.1007/978-3-7091-0956-4_6.
10
An automatic beat detection algorithm for pressure signals.
IEEE Trans Biomed Eng. 2005 Oct;52(10):1662-70. doi: 10.1109/TBME.2005.855725.

引用本文的文献

1
Patient-adaptable intracranial pressure morphology analysis using a probabilistic model-based approach.
Physiol Meas. 2020 Nov 6;41(10):104003. doi: 10.1088/1361-6579/abbcbb.
2
Noise reduction in intracranial pressure signal using causal shape manifolds.
Biomed Signal Process Control. 2016 Jul;28:19-26. doi: 10.1016/j.bspc.2016.03.003. Epub 2016 Apr 30.
3
An automatic method for arterial pulse waveform recognition using KNN and SVM classifiers.
Med Biol Eng Comput. 2016 Jul;54(7):1049-59. doi: 10.1007/s11517-015-1393-5. Epub 2015 Sep 24.
5
Regional prediction of tissue fate in acute ischemic stroke.
Ann Biomed Eng. 2012 Oct;40(10):2177-87. doi: 10.1007/s10439-012-0591-7. Epub 2012 May 17.
6
Intracranial hypertension prediction using extremely randomized decision trees.
Med Eng Phys. 2012 Oct;34(8):1058-65. doi: 10.1016/j.medengphy.2011.11.010. Epub 2012 Mar 7.
7
Bayesian tracking of intracranial pressure signal morphology.
Artif Intell Med. 2012 Feb;54(2):115-23. doi: 10.1016/j.artmed.2011.08.007. Epub 2011 Oct 2.
8
9
The pulsating brain: A review of experimental and clinical studies of intracranial pulsatility.
Fluids Barriers CNS. 2011 Jan 18;8(1):5. doi: 10.1186/2045-8118-8-5.
10
A mechatronic valve in the management of hydrocephalus: methods and performance.
Med Biol Eng Comput. 2011 Jan;49(1):121-32. doi: 10.1007/s11517-010-0716-9. Epub 2010 Dec 21.

本文引用的文献

1
Morphological clustering and analysis of continuous intracranial pressure.
IEEE Trans Biomed Eng. 2009 Mar;56(3):696-705. doi: 10.1109/TBME.2008.2008636. Epub 2008 Nov 7.
2
Blood pressure waveform analysis by means of wavelet transform.
Med Biol Eng Comput. 2009 Feb;47(2):165-73. doi: 10.1007/s11517-008-0397-9. Epub 2008 Sep 30.
3
An algorithm for extracting intracranial pressure latency relative to electrocardiogram R wave.
Physiol Meas. 2008 Apr;29(4):459-71. doi: 10.1088/0967-3334/29/4/004. Epub 2008 Mar 17.
4
Pulse morphology visualization and analysis with applications in cardiovascular pressure signals.
IEEE Trans Biomed Eng. 2007 Sep;54(9):1552-9. doi: 10.1109/TBME.2007.892918.
5
An automatic beat detection algorithm for pressure signals.
IEEE Trans Biomed Eng. 2005 Oct;52(10):1662-70. doi: 10.1109/TBME.2005.855725.
6
Intracranial hypertension: what additional information can be derived from ICP waveform after head injury?
Acta Neurochir (Wien). 2004 Feb;146(2):131-41. doi: 10.1007/s00701-003-0187-y. Epub 2004 Feb 2.
7
ECG beat detection using filter banks.
IEEE Trans Biomed Eng. 1999 Feb;46(2):192-202. doi: 10.1109/10.740882.
8
Significance of intracranial pressure waveform analysis after head injury.
Acta Neurochir (Wien). 1996;138(5):531-41; discussion 541-2. doi: 10.1007/BF01411173.
9
Intracranial pressure waveform indices in transient and refractory intracranial hypertension.
J Neurosci Methods. 1995 Mar;57(1):15-25. doi: 10.1016/0165-0270(94)00106-q.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验