Suppr超能文献

一种用于识别有效脉动信号的子空间分解方法。

A subspace decomposition approach toward recognizing valid pulsatile signals.

机构信息

Neural Systems and Dynamics Laboratory, Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.

出版信息

Physiol Meas. 2009 Nov;30(11):1211-25. doi: 10.1088/0967-3334/30/11/006. Epub 2009 Oct 1.

Abstract

Following recent studies, the automatic analysis of intracranial pressure (ICP) pulses appears to be a promising tool for the prediction of critical intracranial and cerebrovascular pathophysiological variations during the management of many neurological disorders. A pulse analysis framework has been recently developed to automatically extract morphological features of ICP pulses. The algorithm is capable of enhancing the quality of ICP signals, recognizing valid (not contaminated with noise or artifacts) ICP pulses and designating the locations of the three ICP sub-peaks in a pulse. This paper extends the algorithm by proposing a singular value decomposition (SVD) technique to replace the correlation-based approach originally utilized in recognizing valid ICP pulses. The validation of the proposed method is conducted on a large database of ICP signals built from 700 h of recordings from 67 neurosurgical patients. A comparative analysis of the valid ICP recognition using the proposed SVD technique and the correlation-based method demonstrates a significant improvement in terms of (1) accuracy (61.96% reduction in the false positive rate while keeping the true positive rate as high as 99.08%) and (2) computational time (91.14% less time consumption), all in favor of the proposed method. Finally, this SVD-based valid pulse recognition can be potentially applied to process pulsatile signals other than ICP because no proprietary ICP features are incorporated in the algorithm.

摘要

最近的研究表明,颅内压(ICP)脉冲的自动分析似乎是一种很有前途的工具,可以预测在许多神经疾病的治疗过程中关键的颅内和脑血管病理生理变化。最近开发了一种脉冲分析框架,用于自动提取 ICP 脉冲的形态特征。该算法能够增强 ICP 信号的质量,识别有效的(不受噪声或伪影污染)ICP 脉冲,并指定脉冲中三个 ICP 次波的位置。本文通过提出一种奇异值分解(SVD)技术来扩展该算法,以替代最初用于识别有效 ICP 脉冲的基于相关的方法。该方法的验证是在一个由 67 名神经外科患者 700 小时的记录建立的大型 ICP 信号数据库上进行的。使用提出的 SVD 技术和基于相关的方法对有效 ICP 识别进行的比较分析表明,在以下方面有显著的改进:(1)准确性(假阳性率降低 61.96%,而真阳性率仍高达 99.08%)和(2)计算时间(消耗时间减少 91.14%),所有这些都有利于提出的方法。最后,这种基于 SVD 的有效脉冲识别可以潜在地应用于处理除 ICP 以外的脉动信号,因为算法中没有包含专有的 ICP 特征。

相似文献

2
Regression analysis for peak designation in pulsatile pressure signals.在脉动压力信号中进行峰值指定的回归分析。
Med Biol Eng Comput. 2009 Sep;47(9):967-77. doi: 10.1007/s11517-009-0505-5. Epub 2009 Jul 4.
3
4
Morphological clustering and analysis of continuous intracranial pressure.连续颅内压的形态学聚类与分析
IEEE Trans Biomed Eng. 2009 Mar;56(3):696-705. doi: 10.1109/TBME.2008.2008636. Epub 2008 Nov 7.
6
Robust peak recognition in intracranial pressure signals.颅内压信号的稳健峰值识别。
Biomed Eng Online. 2010 Oct 19;9:61. doi: 10.1186/1475-925X-9-61.
7
A robust approach toward recognizing valid arterial-blood-pressure pulses.一种识别有效动脉血压脉搏的可靠方法。
IEEE Trans Inf Technol Biomed. 2010 Jan;14(1):166-72. doi: 10.1109/TITB.2009.2034845. Epub 2009 Oct 30.
9
Algorithm for automatic beat detection of cardiovascular pressure signals.心血管压力信号自动搏动检测算法
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:2594-7. doi: 10.1109/IEMBS.2008.4649731.

引用本文的文献

5
Intracranial hypertension prediction using extremely randomized decision trees.使用极端随机树预测颅内压升高。
Med Eng Phys. 2012 Oct;34(8):1058-65. doi: 10.1016/j.medengphy.2011.11.010. Epub 2012 Mar 7.
10
A robust approach toward recognizing valid arterial-blood-pressure pulses.一种识别有效动脉血压脉搏的可靠方法。
IEEE Trans Inf Technol Biomed. 2010 Jan;14(1):166-72. doi: 10.1109/TITB.2009.2034845. Epub 2009 Oct 30.

本文引用的文献

1
A robust approach toward recognizing valid arterial-blood-pressure pulses.一种识别有效动脉血压脉搏的可靠方法。
IEEE Trans Inf Technol Biomed. 2010 Jan;14(1):166-72. doi: 10.1109/TITB.2009.2034845. Epub 2009 Oct 30.
3
Regression analysis for peak designation in pulsatile pressure signals.在脉动压力信号中进行峰值指定的回归分析。
Med Biol Eng Comput. 2009 Sep;47(9):967-77. doi: 10.1007/s11517-009-0505-5. Epub 2009 Jul 4.
5
Morphological clustering and analysis of continuous intracranial pressure.连续颅内压的形态学聚类与分析
IEEE Trans Biomed Eng. 2009 Mar;56(3):696-705. doi: 10.1109/TBME.2008.2008636. Epub 2008 Nov 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验