Neural Systems and Dynamics Laboratory, Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
Physiol Meas. 2009 Nov;30(11):1211-25. doi: 10.1088/0967-3334/30/11/006. Epub 2009 Oct 1.
Following recent studies, the automatic analysis of intracranial pressure (ICP) pulses appears to be a promising tool for the prediction of critical intracranial and cerebrovascular pathophysiological variations during the management of many neurological disorders. A pulse analysis framework has been recently developed to automatically extract morphological features of ICP pulses. The algorithm is capable of enhancing the quality of ICP signals, recognizing valid (not contaminated with noise or artifacts) ICP pulses and designating the locations of the three ICP sub-peaks in a pulse. This paper extends the algorithm by proposing a singular value decomposition (SVD) technique to replace the correlation-based approach originally utilized in recognizing valid ICP pulses. The validation of the proposed method is conducted on a large database of ICP signals built from 700 h of recordings from 67 neurosurgical patients. A comparative analysis of the valid ICP recognition using the proposed SVD technique and the correlation-based method demonstrates a significant improvement in terms of (1) accuracy (61.96% reduction in the false positive rate while keeping the true positive rate as high as 99.08%) and (2) computational time (91.14% less time consumption), all in favor of the proposed method. Finally, this SVD-based valid pulse recognition can be potentially applied to process pulsatile signals other than ICP because no proprietary ICP features are incorporated in the algorithm.
最近的研究表明,颅内压(ICP)脉冲的自动分析似乎是一种很有前途的工具,可以预测在许多神经疾病的治疗过程中关键的颅内和脑血管病理生理变化。最近开发了一种脉冲分析框架,用于自动提取 ICP 脉冲的形态特征。该算法能够增强 ICP 信号的质量,识别有效的(不受噪声或伪影污染)ICP 脉冲,并指定脉冲中三个 ICP 次波的位置。本文通过提出一种奇异值分解(SVD)技术来扩展该算法,以替代最初用于识别有效 ICP 脉冲的基于相关的方法。该方法的验证是在一个由 67 名神经外科患者 700 小时的记录建立的大型 ICP 信号数据库上进行的。使用提出的 SVD 技术和基于相关的方法对有效 ICP 识别进行的比较分析表明,在以下方面有显著的改进:(1)准确性(假阳性率降低 61.96%,而真阳性率仍高达 99.08%)和(2)计算时间(消耗时间减少 91.14%),所有这些都有利于提出的方法。最后,这种基于 SVD 的有效脉冲识别可以潜在地应用于处理除 ICP 以外的脉动信号,因为算法中没有包含专有的 ICP 特征。