Suppr超能文献

通过磷酸化骨桥蛋白和聚天冬氨酸肽的选择性晶面结合调节二水合草酸钙晶体生长,显示出扇形(成分)分带导致的阻塞。

Modulation of calcium oxalate dihydrate growth by selective crystal-face binding of phosphorylated osteopontin and polyaspartate peptide showing occlusion by sectoral (compositional) zoning.

作者信息

Chien Yung-Ching, Masica David L, Gray Jeffrey J, Nguyen Sarah, Vali Hojatollah, McKee Marc D

机构信息

Faculty of Dentistry, McGill University, Montreal, Quebec H3A 2B2, Canada.

出版信息

J Biol Chem. 2009 Aug 28;284(35):23491-501. doi: 10.1074/jbc.M109.021899. Epub 2009 Jul 6.

Abstract

Calcium oxalate dihydrate (COD) mineral and the urinary protein osteopontin/uropontin (OPN) are commonly found in kidney stones. To investigate the effects of OPN on COD growth, COD crystals were grown with phosphorylated OPN or a polyaspartic acid-rich peptide of OPN (DDLDDDDD, poly-Asp(86-93)). Crystals grown with OPN showed increased dimensions of the {110} prismatic faces attributable to selective inhibition at this crystallographic face. At high concentrations of OPN, elongated crystals with dominant {110} faces were produced, often with intergrown, interpenetrating twin crystals. Poly-Asp(86-93) dose-dependently elongated crystal morphology along the {110} faces in a manner similar to OPN. In crystal growth studies using fluorescently tagged poly-Asp(86-93) followed by imaging of crystal interiors using confocal microscopy, sectoral (compositional) zoning in COD was observed resulting from selective binding and incorporation (occlusion) of peptide exclusively into {110} crystal sectors. Computational modeling of poly-Asp(86-93) adsorption to COD {110} and {101} surfaces also suggests increased stabilization of the COD {110} surface and negligible change to the natively stable {101} surface. Ultrastructural, colloidal-gold immunolocalization of OPN by transmission electron microscopy in human stones confirmed an intracrystalline distribution of OPN. In summary, OPN and its poly-Asp(86-93) sequence similarly affect COD mineral growth; the {110} crystallographic faces become enhanced and dominant attributable to {110} face inhibition by the protein/peptide, and peptides can incorporate into the mineral phase. We, thus, conclude that the poly-Asp(86-93) domain is central to the OPN ability to interact with the {110} faces of COD, where it binds to inhibit crystal growth with subsequent intracrystalline incorporation (occlusion).

摘要

二水合草酸钙(COD)矿物质和尿蛋白骨桥蛋白/尿桥蛋白(OPN)在肾结石中普遍存在。为了研究OPN对COD生长的影响,用磷酸化OPN或富含聚天冬氨酸的OPN肽(DDLDDDDD,聚天冬氨酸(86 - 93))培养COD晶体。用OPN培养的晶体显示{110}棱柱面尺寸增加,这归因于该晶面的选择性抑制。在高浓度OPN下,会产生具有主导{110}面的细长晶体,通常伴有共生、相互贯穿的孪晶。聚天冬氨酸(86 - 93)以类似于OPN的方式沿{110}面剂量依赖性地拉长晶体形态。在使用荧光标记的聚天冬氨酸(86 - 93)进行晶体生长研究,随后用共聚焦显微镜对晶体内部进行成像时,观察到COD中存在扇形(成分)分区,这是由于肽仅选择性地结合并掺入(封闭)到{110}晶体扇区中所致。聚天冬氨酸(86 - 93)吸附到COD {110}和{101}表面的计算模型也表明,COD {110}表面的稳定性增加,而对天然稳定的{101}表面的变化可忽略不计。通过透射电子显微镜对人结石中的OPN进行超微结构、胶体金免疫定位,证实了OPN在晶体内的分布。总之,OPN及其聚天冬氨酸(86 - 93)序列对COD矿物质生长的影响相似;由于蛋白质/肽对{110}面的抑制作用,{110}晶面增强并占主导地位,并且肽可以掺入矿物相中。因此,我们得出结论,聚天冬氨酸(86 - 93)结构域是OPN与COD的{110}面相互作用能力的核心,它在该晶面结合以抑制晶体生长,随后在晶体内掺入(封闭)。

相似文献

2
Modulation of calcium oxalate dihydrate growth by phosphorylated osteopontin peptides.
J Struct Biol. 2018 Nov;204(2):131-144. doi: 10.1016/j.jsb.2018.07.010. Epub 2018 Jul 17.
5
Phosphorylation of osteopontin peptides mediates adsorption to and incorporation into calcium oxalate crystals.
Cells Tissues Organs. 2009;189(1-4):51-5. doi: 10.1159/000151724. Epub 2008 Aug 26.
6
On the catalysis of calcium oxalate dihydrate formation by osteopontin peptides.
Colloids Surf B Biointerfaces. 2012 Aug 1;96:22-8. doi: 10.1016/j.colsurfb.2012.03.015. Epub 2012 Mar 29.
7
Face-specific incorporation of osteopontin into urinary and inorganic calcium oxalate monohydrate and dihydrate crystals.
Urol Res. 2010 Oct;38(5):357-76. doi: 10.1007/s00240-010-0300-7. Epub 2010 Jul 22.
8
Specific adsorption of osteopontin and synthetic polypeptides to calcium oxalate monohydrate crystals.
Biophys J. 2007 Sep 1;93(5):1768-77. doi: 10.1529/biophysj.106.101881. Epub 2007 May 11.
9
Incorporation of osteopontin peptide into kidney stone-related calcium oxalate monohydrate crystals: a quantitative study.
Urolithiasis. 2019 Oct;47(5):425-440. doi: 10.1007/s00240-018-01105-x. Epub 2018 Dec 19.
10
Control of calcium oxalate crystal growth by face-specific adsorption of an osteopontin phosphopeptide.
J Am Chem Soc. 2007 Dec 5;129(48):14946-51. doi: 10.1021/ja0745613. Epub 2007 Nov 10.

引用本文的文献

3
Ab Initio Molecular Dynamics Simulations of Phosphocholine Interactions with a Calcium Oxalate Dihydrate (110) Surface.
Cryst Growth Des. 2024 Sep 18;24(19):8063-8075. doi: 10.1021/acs.cgd.4c01032. eCollection 2024 Oct 2.
4
The impact of crystal phase transition on the hardness and structure of kidney stones.
Urolithiasis. 2024 Apr 2;52(1):57. doi: 10.1007/s00240-024-01556-5.
7
Intrinsically Disordered Osteopontin Fragment Orders During Interfacial Calcium Oxalate Mineralization.
Angew Chem Int Ed Engl. 2021 Aug 16;60(34):18577-18581. doi: 10.1002/anie.202105768. Epub 2021 Jul 16.
8
Human kidney stones: a natural record of universal biomineralization.
Nat Rev Urol. 2021 Jul;18(7):404-432. doi: 10.1038/s41585-021-00469-x. Epub 2021 May 24.
9
Developments and Ongoing Challenges for Analysis of Surface-Bound Proteins.
Annu Rev Anal Chem (Palo Alto Calif). 2021 Jul 27;14(1):389-412. doi: 10.1146/annurev-anchem-091520-010206.
10
Ptychographic X-ray tomography reveals additive zoning in nanocomposite single crystals.
Chem Sci. 2019 Nov 15;11(2):355-363. doi: 10.1039/c9sc04670d. eCollection 2020 Jan 14.

本文引用的文献

1
Solution- and adsorbed-state structural ensembles predicted for the statherin-hydroxyapatite system.
Biophys J. 2009 Apr 22;96(8):3082-91. doi: 10.1016/j.bpj.2009.01.033.
3
Peptides enhance magnesium signature in calcite: insights into origins of vital effects.
Science. 2008 Oct 31;322(5902):724-7. doi: 10.1126/science.1159417.
4
Phosphorylation of osteopontin peptides mediates adsorption to and incorporation into calcium oxalate crystals.
Cells Tissues Organs. 2009;189(1-4):51-5. doi: 10.1159/000151724. Epub 2008 Aug 26.
5
Role of phosphate groups in inhibition of calcium oxalate crystal growth by osteopontin.
Cells Tissues Organs. 2009;189(1-4):44-50. doi: 10.1159/000151430. Epub 2008 Aug 15.
6
Ultrastructural matrix-mineral relationships in avian eggshell, and effects of osteopontin on calcite growth in vitro.
J Struct Biol. 2008 Jul;163(1):84-99. doi: 10.1016/j.jsb.2008.04.008. Epub 2008 Apr 23.
8
Intracrystalline urinary proteins facilitate degradation and dissolution of calcium oxalate crystals in cultured renal cells.
Am J Physiol Renal Physiol. 2008 Feb;294(2):F355-61. doi: 10.1152/ajprenal.00529.2007. Epub 2007 Dec 12.
9
Control of calcium oxalate crystal growth by face-specific adsorption of an osteopontin phosphopeptide.
J Am Chem Soc. 2007 Dec 5;129(48):14946-51. doi: 10.1021/ja0745613. Epub 2007 Nov 10.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验