Suppr超能文献

骨桥蛋白和合成多肽对一水合草酸钙晶体的特异性吸附。

Specific adsorption of osteopontin and synthetic polypeptides to calcium oxalate monohydrate crystals.

作者信息

Taller Adam, Grohe Bernd, Rogers Kem A, Goldberg Harvey A, Hunter Graeme K

机构信息

Canadian Institutes of Health Research Group in Skeletal Development and Remodeling, and Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.

出版信息

Biophys J. 2007 Sep 1;93(5):1768-77. doi: 10.1529/biophysj.106.101881. Epub 2007 May 11.

Abstract

Protein-crystal interactions are known to be important in biomineralization. To study the physicochemical basis of such interactions, we have developed a technique that combines confocal microscopy of crystals with fluorescence imaging of proteins. In this study, osteopontin (OPN), a protein abundant in urine, was labeled with the fluorescent dye AlexaFluor-488 and added to crystals of calcium oxalate monohydrate (COM), the major constituent of kidney stones. In five to seven optical sections along the z axis, scanning confocal microscopy was used to visualize COM crystals and fluorescence imaging to map OPN adsorbed to the crystals. To quantify the relative adsorption to different crystal faces, fluorescence intensity was measured around the perimeter of the crystal in several sections. Using this method, it was shown that OPN adsorbs with high specificity to the edges between {100} and {121} faces of COM and much less so to {100}, {121}, or {010} faces. By contrast, poly-L-aspartic acid adsorbs preferentially to {121} faces, whereas poly-L-glutamic acid adsorbs to all faces approximately equally. Growth of COM in the presence of rat bone OPN results in dumbbell-shaped crystals. We hypothesize that the edge-specific adsorption of OPN may be responsible for the dumbbell morphology of COM crystals found in human urine.

摘要

蛋白质-晶体相互作用在生物矿化过程中起着重要作用。为了研究此类相互作用的物理化学基础,我们开发了一种技术,该技术将晶体的共聚焦显微镜与蛋白质的荧光成像相结合。在本研究中,尿液中丰富的蛋白质骨桥蛋白(OPN)用荧光染料AlexaFluor-488标记,并添加到一水草酸钙(COM)晶体中,COM是肾结石的主要成分。沿着z轴在五到七个光学切片中,使用扫描共聚焦显微镜观察COM晶体,并通过荧光成像绘制吸附在晶体上的OPN。为了量化对不同晶面的相对吸附,在几个切片中测量晶体周边的荧光强度。使用这种方法表明,OPN以高特异性吸附到COM的{100}面和{121}面之间的边缘,而对{100}、{121}或{010}面的吸附则少得多。相比之下,聚-L-天冬氨酸优先吸附到{121}面,而聚-L-谷氨酸对所有面的吸附大致相同。在大鼠骨OPN存在下COM的生长会产生哑铃形晶体。我们推测,OPN的边缘特异性吸附可能是导致人类尿液中发现的COM晶体呈哑铃形态的原因。

相似文献

1
Specific adsorption of osteopontin and synthetic polypeptides to calcium oxalate monohydrate crystals.
Biophys J. 2007 Sep 1;93(5):1768-77. doi: 10.1529/biophysj.106.101881. Epub 2007 May 11.
2
Control of calcium oxalate crystal growth by face-specific adsorption of an osteopontin phosphopeptide.
J Am Chem Soc. 2007 Dec 5;129(48):14946-51. doi: 10.1021/ja0745613. Epub 2007 Nov 10.
3
4
Role of phosphate groups in inhibition of calcium oxalate crystal growth by osteopontin.
Cells Tissues Organs. 2009;189(1-4):44-50. doi: 10.1159/000151430. Epub 2008 Aug 15.
5
Label-free mapping of osteopontin adsorption to calcium oxalate monohydrate crystals by tip-enhanced Raman spectroscopy.
J Am Chem Soc. 2012 Oct 17;134(41):17076-82. doi: 10.1021/ja3057562. Epub 2012 Oct 3.
7
Incorporation of osteopontin peptide into kidney stone-related calcium oxalate monohydrate crystals: a quantitative study.
Urolithiasis. 2019 Oct;47(5):425-440. doi: 10.1007/s00240-018-01105-x. Epub 2018 Dec 19.
8
Phosphorylation of osteopontin peptides mediates adsorption to and incorporation into calcium oxalate crystals.
Cells Tissues Organs. 2009;189(1-4):51-5. doi: 10.1159/000151724. Epub 2008 Aug 26.

引用本文的文献

3
Morphogenesis and evolution mechanisms of bacterially-induced struvite.
Sci Rep. 2021 Jan 8;11(1):170. doi: 10.1038/s41598-020-80718-y.
5
Incorporation of osteopontin peptide into kidney stone-related calcium oxalate monohydrate crystals: a quantitative study.
Urolithiasis. 2019 Oct;47(5):425-440. doi: 10.1007/s00240-018-01105-x. Epub 2018 Dec 19.
8
Peptides of Matrix Gla protein inhibit nucleation and growth of hydroxyapatite and calcium oxalate monohydrate crystals.
PLoS One. 2013 Nov 12;8(11):e80344. doi: 10.1371/journal.pone.0080344. eCollection 2013.
9
Biomolecular mechanism of urinary stone formation involving osteopontin.
Urol Res. 2012 Dec;40(6):623-37. doi: 10.1007/s00240-012-0514-y. Epub 2012 Nov 6.
10
Cementomimetics-constructing a cementum-like biomineralized microlayer via amelogenin-derived peptides.
Int J Oral Sci. 2012 Jun;4(2):69-77. doi: 10.1038/ijos.2012.40. Epub 2012 Jun 29.

本文引用的文献

1
Modulation of calcium oxalate crystallization by linear aspartic acid-rich peptides.
Langmuir. 2006 Aug 15;22(17):7279-85. doi: 10.1021/la060897z.
2
Images in clinical medicine. Urinary calcium oxalate crystals in ethylene glycol intoxication.
N Engl J Med. 2005 Dec 15;353(24):e21. doi: 10.1056/NEJMicm050183.
5
Regulation by macromolecules of calcium oxalate crystal aggregation in stone formers.
Urol Res. 2005 Jun;33(3):206-12. doi: 10.1007/s00240-004-0455-1. Epub 2005 Apr 28.
6
Adhesion at calcium oxalate crystal surfaces and the effect of urinary constituents.
Proc Natl Acad Sci U S A. 2005 Jan 11;102(2):267-72. doi: 10.1073/pnas.0406835101. Epub 2004 Dec 29.
7
Osteopontin and calcium stone formation.
Nephron Physiol. 2004;98(2):p43-7. doi: 10.1159/000080263.
9
Tamm-Horsfall protein is a critical renal defense factor protecting against calcium oxalate crystal formation.
Kidney Int. 2004 Sep;66(3):1159-66. doi: 10.1111/j.1523-1755.2004.00867.x.
10
Molecular modulation of calcium oxalate crystallization by osteopontin and citrate.
Proc Natl Acad Sci U S A. 2004 Feb 17;101(7):1811-5. doi: 10.1073/pnas.0307900100. Epub 2004 Feb 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验