Suppr超能文献

自溶素LytA有助于肺炎链球菌中噬菌体后代的有效释放。

The autolysin LytA contributes to efficient bacteriophage progeny release in Streptococcus pneumoniae.

作者信息

Frias Maria João, Melo-Cristino José, Ramirez Mário

机构信息

Unidade de Microbiologia Molecular e Infecção, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal.

出版信息

J Bacteriol. 2009 Sep;191(17):5428-40. doi: 10.1128/JB.00477-09. Epub 2009 Jul 6.

Abstract

Most bacteriophages (phages) release their progeny through the action of holins that form lesions in the cytoplasmic membrane and lysins that degrade the bacterial peptidoglycan. Although the function of each protein is well established in phages infecting Streptococcus pneumoniae, the role--if any--of the powerful bacterial autolysin LytA in virion release is currently unknown. In this study, deletions of the bacterial and phage lysins were done in lysogenic S. pneumoniae strains, allowing the evaluation of the contribution of each lytic enzyme to phage release through the monitoring of bacterial-culture lysis and phage plaque assays. In addition, we assessed membrane integrity during phage-mediated lysis using flow cytometry to evaluate the regulatory role of holins over the lytic activities. Our data show that LytA is activated at the end of the lytic cycle and that its triggering results from holin-induced membrane permeabilization. In the absence of phage lysin, LytA is able to mediate bacterial lysis and phage release, although exclusive dependence on the autolysin results in reduced virion egress and altered kinetics that may impair phage fitness. Under normal conditions, activation of bacterial LytA, together with the phage lysin, leads to greater phage progeny release. Our findings demonstrate that S. pneumoniae phages use the ubiquitous host autolysin to accomplish an optimal phage exiting strategy.

摘要

大多数噬菌体通过形成细胞膜损伤的穿孔素和降解细菌肽聚糖的溶菌酶的作用来释放其后代。尽管在感染肺炎链球菌的噬菌体中,每种蛋白质的功能已得到充分证实,但强大的细菌自溶素LytA在病毒体释放中的作用(如果有)目前尚不清楚。在本研究中,在溶原性肺炎链球菌菌株中删除了细菌和噬菌体溶菌酶,通过监测细菌培养物裂解和噬菌斑测定来评估每种裂解酶对噬菌体释放的贡献。此外,我们使用流式细胞术评估噬菌体介导的裂解过程中的膜完整性,以评估穿孔素对裂解活性的调节作用。我们的数据表明,LytA在裂解周期结束时被激活,其触发是由穿孔素诱导的膜通透性增加导致的。在没有噬菌体溶菌酶的情况下,LytA能够介导细菌裂解和噬菌体释放,尽管完全依赖自溶素会导致病毒体释放减少和动力学改变,这可能会损害噬菌体的适应性。在正常情况下,细菌LytA与噬菌体溶菌酶的激活会导致更多的噬菌体后代释放。我们的研究结果表明,肺炎链球菌噬菌体利用普遍存在的宿主自溶素来实现最佳的噬菌体释放策略。

相似文献

1
The autolysin LytA contributes to efficient bacteriophage progeny release in Streptococcus pneumoniae.
J Bacteriol. 2009 Sep;191(17):5428-40. doi: 10.1128/JB.00477-09. Epub 2009 Jul 6.
2
Export of the pneumococcal phage SV1 lysin requires choline-containing teichoic acids and is holin-independent.
Mol Microbiol. 2013 Jan;87(2):430-45. doi: 10.1111/mmi.12108. Epub 2012 Dec 11.
3
The pneumococcal cell wall degrading enzymes: a modular design to create new lysins?
Microb Drug Resist. 1997 Summer;3(2):199-211. doi: 10.1089/mdr.1997.3.199.
8
LytA, major autolysin of Streptococcus pneumoniae, requires access to nascent peptidoglycan.
J Biol Chem. 2012 Mar 30;287(14):11018-29. doi: 10.1074/jbc.M111.318584. Epub 2012 Feb 9.
9
In vitro destruction of Streptococcus pneumoniae biofilms with bacterial and phage peptidoglycan hydrolases.
Antimicrob Agents Chemother. 2011 Sep;55(9):4144-8. doi: 10.1128/AAC.00492-11. Epub 2011 Jul 11.

引用本文的文献

1
Lytic bacteriophages as alternative to overcoming antibiotic-resistant biofilms formed by clinically significant bacteria.
Ther Adv Infect Dis. 2025 Jul 18;12:20499361251356057. doi: 10.1177/20499361251356057. eCollection 2025 Jan-Dec.
3
Novel P335-like Phage Resistance Arises from Deletion within Putative Autolysin in .
Viruses. 2023 Oct 31;15(11):2193. doi: 10.3390/v15112193.
4
Cell wall modifications that alter the exolytic activity of lactococcal phage endolysins have little impact on phage growth.
Front Microbiol. 2023 Jan 20;14:1106049. doi: 10.3389/fmicb.2023.1106049. eCollection 2023.
5
Antibacterial activity of medicinal plants in Indonesia on Streptococcus pneumoniae.
PLoS One. 2022 Sep 13;17(9):e0274174. doi: 10.1371/journal.pone.0274174. eCollection 2022.
8
Lysogeny in .
Microorganisms. 2020 Oct 7;8(10):1546. doi: 10.3390/microorganisms8101546.
9
Interactions between Bacteriophages and Eukaryotic Cells.
Scientifica (Cairo). 2020 Jun 9;2020:3589316. doi: 10.1155/2020/3589316. eCollection 2020.
10
How Phages Overcome the Challenges of Drug Resistant Bacteria in Clinical Infections.
Infect Drug Resist. 2020 Jan 7;13:45-61. doi: 10.2147/IDR.S234353. eCollection 2020.

本文引用的文献

1
The holin of bacteriophage lambda forms rings with large diameter.
Mol Microbiol. 2008 Aug;69(4):784-793. doi: 10.1111/j.1365-2958.2008.06298.x.
2
A novel lysis system in PM2, a lipid-containing marine double-stranded DNA bacteriophage.
Mol Microbiol. 2007 Jun;64(6):1635-48. doi: 10.1111/j.1365-2958.2007.05769.x.
3
Clocking out: modeling phage-induced lysis of Escherichia coli.
J Bacteriol. 2007 Jul;189(13):4749-55. doi: 10.1128/JB.00392-07. Epub 2007 Apr 27.
5
Lysis timing and bacteriophage fitness.
Genetics. 2006 Jan;172(1):17-26. doi: 10.1534/genetics.105.045922. Epub 2005 Oct 11.
6
Evolutionary robustness of an optimal phenotype: re-evolution of lysis in a bacteriophage deleted for its lysin gene.
J Mol Evol. 2005 Aug;61(2):181-91. doi: 10.1007/s00239-004-0304-4. Epub 2005 Jul 26.
7
Disulfide isomerization after membrane release of its SAR domain activates P1 lysozyme.
Science. 2005 Jan 7;307(5706):113-7. doi: 10.1126/science.1105143.
9
A signal-arrest-release sequence mediates export and control of the phage P1 endolysin.
Proc Natl Acad Sci U S A. 2004 Apr 27;101(17):6415-20. doi: 10.1073/pnas.0400957101. Epub 2004 Apr 16.
10
Induction of phage formation in the lysogenic Escherichia coli K-12 by mitomycin C.
Nature. 1959 Oct 3;184(Suppl 14):1079-80. doi: 10.1038/1841079b0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验