Suppr超能文献

介绍CPL/MUW蛋白质组数据库:通过参考分离的原代细胞解读人类肝脏和肝癌蛋白质组图谱。

Introducing the CPL/MUW proteome database: interpretation of human liver and liver cancer proteome profiles by referring to isolated primary cells.

作者信息

Wimmer Helge, Gundacker Nina C, Griss Johannes, Haudek Verena J, Stättner Stefan, Mohr Thomas, Zwickl Hannes, Paulitschke Verena, Baron David M, Trittner Wolfgang, Kubicek Markus, Bayer Editha, Slany Astrid, Gerner Christopher

机构信息

Section Biomedical Laboratory Science, FH Campus Wien, Vienna, Austria.

出版信息

Electrophoresis. 2009 Jun;30(12):2076-89. doi: 10.1002/elps.200900072.

Abstract

Interpretation of proteome data with a focus on biomarker discovery largely relies on comparative proteome analyses. Here, we introduce a database-assisted interpretation strategy based on proteome profiles of primary cells. Both 2-D-PAGE and shotgun proteomics are applied. We obtain high data concordance with these two different techniques. When applying mass analysis of tryptic spot digests from 2-D gels of cytoplasmic fractions, we typically identify several hundred proteins. Using the same protein fractions, we usually identify more than thousand proteins by shotgun proteomics. The data consistency obtained when comparing these independent data sets exceeds 99% of the proteins identified in the 2-D gels. Many characteristic differences in protein expression of different cells can thus be independently confirmed. Our self-designed SQL database (CPL/MUW - database of the Clinical Proteomics Laboratories at the Medical University of Vienna accessible via www.meduniwien.ac.at/proteomics/database) facilitates (i) quality management of protein identification data, which are based on MS, (ii) the detection of cell type-specific proteins and (iii) of molecular signatures of specific functional cell states. Here, we demonstrate, how the interpretation of proteome profiles obtained from human liver tissue and hepatocellular carcinoma tissue is assisted by the Clinical Proteomics Laboratories at the Medical University of Vienna-database. Therefore, we suggest that the use of reference experiments supported by a tailored database may substantially facilitate data interpretation of proteome profiling experiments.

摘要

侧重于生物标志物发现的蛋白质组数据解读很大程度上依赖于比较蛋白质组分析。在此,我们介绍一种基于原代细胞蛋白质组图谱的数据库辅助解读策略。二维聚丙烯酰胺凝胶电泳(2-D-PAGE)和鸟枪法蛋白质组学都得到了应用。我们在这两种不同技术之间获得了高度的数据一致性。对细胞质组分二维凝胶上胰蛋白酶消化斑点进行质谱分析时,我们通常能鉴定出数百种蛋白质。使用相同的蛋白质组分,通过鸟枪法蛋白质组学我们通常能鉴定出一千多种蛋白质。比较这些独立数据集时获得的数据一致性超过了二维凝胶中鉴定出的蛋白质的99%。因此,不同细胞蛋白质表达的许多特征性差异都能得到独立确认。我们自行设计的SQL数据库(CPL/MUW - 维也纳医科大学临床蛋白质组学实验室数据库,可通过www.meduniwien.ac.at/proteomics/database访问)有助于(i)基于质谱的蛋白质鉴定数据的质量管理,(ii)细胞类型特异性蛋白质的检测,以及(iii)特定功能细胞状态的分子特征的检测。在此,我们展示了维也纳医科大学临床蛋白质组学实验室数据库如何辅助解读从人类肝脏组织和肝细胞癌组织获得的蛋白质组图谱。因此,我们建议使用由定制数据库支持的参考实验可能会极大地促进蛋白质组分析实验的数据解读。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验