Suppr超能文献

热休克蛋白组织蛋白四肽重复结构域与热休克蛋白70和热休克蛋白90的静电相互作用:计算分析与蛋白质工程

Electrostatic interactions of Hsp-organizing protein tetratricopeptide domains with Hsp70 and Hsp90: computational analysis and protein engineering.

作者信息

Kajander Tommi, Sachs Jonathan N, Goldman Adrian, Regan Lynne

机构信息

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, USA.

出版信息

J Biol Chem. 2009 Sep 11;284(37):25364-74. doi: 10.1074/jbc.M109.033894. Epub 2009 Jul 7.

Abstract

The Hsp-organizing protein (HOP) binds to the C termini of the chaperones Hsp70 and Hsp90, thus bringing them together so that substrate proteins can be passed from Hsp70 to Hsp90. Because Hsp90 is essential for the correct folding and maturation of many oncogenic proteins, it has become a significant target for anti-cancer drug design. HOP binds to Hsp70 and Hsp90 via two independent tetratricopeptide (TPR) domains, TPR1 and TPR2A, respectively. We have analyzed ligand binding using Poisson-Boltzmann continuum electrostatic calculations, free energy perturbation, molecular dynamics simulations, and site-directed mutagenesis to delineate the contribution of different interactions to the affinity and specificity of the TPR-peptide interactions. We found that continuum electrostatic calculations could be used to guide protein design by removing unfavorable interactions to increase binding affinity, with an 80-fold increase in affinity for TPR2A. Contributions at buried charged residues, however, were better predicted by free energy perturbation calculations. We suggest using a combination of the two approaches for increasing the accuracy of results, with free energy perturbation calculations used only at selected buried residues of the ligand binding pocket. Finally we present the crystal structure of TPR2A in complex with its non-cognate Hsp70 ligand, which provides insight on the origins of specificity in TPR domain-peptide recognition.

摘要

热休克蛋白组织蛋白(HOP)与伴侣蛋白Hsp70和Hsp90的C末端结合,从而使它们聚集在一起,以便底物蛋白能够从Hsp70传递到Hsp90。由于Hsp90对于许多致癌蛋白的正确折叠和成熟至关重要,它已成为抗癌药物设计的重要靶点。HOP分别通过两个独立的四肽重复(TPR)结构域TPR1和TPR2A与Hsp70和Hsp90结合。我们使用泊松-玻尔兹曼连续静电计算、自由能扰动、分子动力学模拟和定点诱变分析了配体结合,以描绘不同相互作用对TPR-肽相互作用的亲和力和特异性的贡献。我们发现,连续静电计算可用于通过消除不利相互作用来指导蛋白质设计,以增加结合亲和力,TPR2A的亲和力提高了80倍。然而,埋藏带电残基的贡献通过自由能扰动计算能得到更好的预测。我们建议结合使用这两种方法以提高结果的准确性,自由能扰动计算仅用于配体结合口袋中选定的埋藏残基。最后,我们展示了TPR2A与其非同源Hsp70配体复合物的晶体结构,这为TPR结构域-肽识别中的特异性起源提供了见解。

相似文献

2
Ligand discrimination by TPR domains. Relevance and selectivity of EEVD-recognition in Hsp70 x Hop x Hsp90 complexes.
J Biol Chem. 2002 May 31;277(22):19265-75. doi: 10.1074/jbc.M109002200. Epub 2002 Mar 4.
5
Interaction of the Hsp90 cochaperone cyclophilin 40 with Hsc70.
Cell Stress Chaperones. 2004 Summer;9(2):167-81. doi: 10.1379/csc-26r.1.
6
The architecture of functional modules in the Hsp90 co-chaperone Sti1/Hop.
EMBO J. 2012 Mar 21;31(6):1506-17. doi: 10.1038/emboj.2011.472. Epub 2012 Jan 6.
7
Functional coevolutionary networks of the Hsp70-Hop-Hsp90 system revealed through computational analyses.
Mol Biol Evol. 2007 Apr;24(4):1032-44. doi: 10.1093/molbev/msm022. Epub 2007 Jan 30.
8
Multiple domains of the co-chaperone Hop are important for Hsp70 binding.
J Biol Chem. 2004 Apr 16;279(16):16185-93. doi: 10.1074/jbc.M314130200. Epub 2004 Feb 11.

引用本文的文献

1
Modulators of the Hop-HSP90 Protein-Protein Interaction Disrupt KSHV Lytic Replication.
ACS Infect Dis. 2024 Nov 8;10(11):3853-3867. doi: 10.1021/acsinfecdis.4c00429. Epub 2024 Oct 30.
2
The role of the co-chaperone HOP in plant homeostasis during development and stress.
J Exp Bot. 2024 Jul 23;75(14):4274-4286. doi: 10.1093/jxb/erae013.
3
Gas and light: triggers of c-di-GMP-mediated regulation.
FEMS Microbiol Rev. 2023 Jul 5;47(4). doi: 10.1093/femsre/fuad034.
4
Heat shock proteins and metal ions - Reaction or interaction?
Comput Struct Biotechnol J. 2023 May 24;21:3103-3108. doi: 10.1016/j.csbj.2023.05.024. eCollection 2023.
5
The Effect of Mutations in the TPR and Ankyrin Families of Alpha Solenoid Repeat Proteins.
Front Bioinform. 2021 Jul 6;1:696368. doi: 10.3389/fbinf.2021.696368. eCollection 2021.
6
The Hsp70-Hsp90 go-between Hop/Stip1/Sti1 is a proteostatic switch and may be a drug target in cancer and neurodegeneration.
Cell Mol Life Sci. 2021 Dec;78(23):7257-7273. doi: 10.1007/s00018-021-03962-z. Epub 2021 Oct 22.
7
The disruption of protein-protein interactions with co-chaperones and client substrates as a strategy towards Hsp90 inhibition.
Acta Pharm Sin B. 2021 Jun;11(6):1446-1468. doi: 10.1016/j.apsb.2020.11.015. Epub 2020 Nov 24.
9
The STI1-domain is a flexible alpha-helical fold with a hydrophobic groove.
Protein Sci. 2021 Apr;30(4):882-898. doi: 10.1002/pro.4049. Epub 2021 Mar 4.
10
Molecular basis of the interaction of Hsp90 with its co-chaperone Hop.
Protein Sci. 2020 Dec;29(12):2422-2432. doi: 10.1002/pro.3969. Epub 2020 Oct 19.

本文引用的文献

2
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
3
A novel class of small molecule inhibitors of Hsp90.
ACS Chem Biol. 2008 Oct 17;3(10):645-54. doi: 10.1021/cb800162x. Epub 2008 Sep 12.
4
The Hsp90 chaperone machinery.
J Biol Chem. 2008 Jul 4;283(27):18473-7. doi: 10.1074/jbc.R800007200. Epub 2008 Apr 28.
5
Designed TPR modules as novel anticancer agents.
ACS Chem Biol. 2008 Mar 20;3(3):161-6. doi: 10.1021/cb700260z.
6
The glucocorticoid responses are shaped by molecular chaperones.
Mol Cell Endocrinol. 2007 Sep 15;275(1-2):2-12. doi: 10.1016/j.mce.2007.05.018. Epub 2007 Jun 2.
7
Structure and mechanism of the Hsp90 molecular chaperone machinery.
Annu Rev Biochem. 2006;75:271-94. doi: 10.1146/annurev.biochem.75.103004.142738.
8
Ligand binding by TPR domains.
Protein Sci. 2006 May;15(5):1193-8. doi: 10.1110/ps.062092506.
9
Protein stability and surface electrostatics: a charged relationship.
Biochemistry. 2006 Mar 7;45(9):2761-6. doi: 10.1021/bi0600143.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验