Suppr超能文献

纳米颗粒逃避网状内皮系统:支撑双层膜的作用。

Nanoparticles evading the reticuloendothelial system: role of the supported bilayer.

作者信息

Li Shyh-Dar, Huang Leaf

机构信息

School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA.

出版信息

Biochim Biophys Acta. 2009 Oct;1788(10):2259-66. doi: 10.1016/j.bbamem.2009.06.022. Epub 2009 Jul 10.

Abstract

We have previously shown that the PEGylated LPD (liposome-polycation-DNA) nanoparticles were highly efficient in delivering siRNA to the tumor with low liver uptake. Its mechanism of evading the reticuloendothelial system (RES) is reported here. In LPD, nucleic acids were condensed with protamine into a compact core, which was then coated by two cationic lipid bilayers with the inner bilayer stabilized by charge-charge interaction (also called the supported bilayer). Finally, a detergent-like molecule, polyethylene glycol (PEG)-phospholipid is post-inserted into the lipid bilayer to modify the surface of LPD. The dynamic light scattering (DLS) data showed that LPD had improved stability compared to cationic liposomes after incubation with a high concentration of DSPE-PEG(2000), which is known to disrupt the bilayer. LPD prepared with a multivalent cationic lipid, DSGLA, had enhanced stability compared to those containing DOTAP, a monovalent cationic lipid, suggesting that stronger charge-charge interaction in the supported bilayer contributed to a higher stability. Distinct nanoparticle structure was found in the PEGylated LPD by transmission electron microscopy, while the cationic liposomes were transformed into tubular micelles. Size exclusion chromatography data showed that approximately 60% of the total cationic lipids, which were located in the outer bilayer of LPD, were stripped off during the PEGylation; and about 20% of the input DSPE-PEG(2000) was incorporated into the inner bilayer with about 10.6 mol% of DSPE-PEG(2000) presented on the particle surface. This led to complete charge shielding, low liver sinusoidal uptake, and 32.5% injected dose delivered to the NCI-H460 tumor in a xenograft model.

摘要

我们之前已经表明,聚乙二醇化的LPD(脂质体-聚阳离子-DNA)纳米颗粒在将小干扰RNA(siRNA)高效递送至肿瘤且肝脏摄取量低方面表现出色。本文报道了其逃避网状内皮系统(RES)的机制。在LPD中,核酸与鱼精蛋白凝聚形成紧密的核心,然后由两个阳离子脂质双层包裹,内层双层通过电荷-电荷相互作用(也称为支撑双层)稳定。最后,一种类似去污剂的分子,聚乙二醇(PEG)-磷脂被后插入脂质双层以修饰LPD的表面。动态光散射(DLS)数据表明,与阳离子脂质体相比,在与已知会破坏双层的高浓度DSPE-PEG(2000)孵育后,LPD的稳定性有所提高。与含有单价阳离子脂质DOTAP的LPD相比,用多价阳离子脂质DSGLA制备的LPD稳定性增强,这表明支撑双层中更强的电荷-电荷相互作用有助于提高稳定性。通过透射电子显微镜在聚乙二醇化的LPD中发现了独特的纳米颗粒结构,而阳离子脂质体则转变为管状胶束。尺寸排阻色谱数据表明,位于LPD外层双层中的约60%的总阳离子脂质在聚乙二醇化过程中被剥离;约20%的输入DSPE-PEG(2000)被掺入内层双层,约10.6 mol%的DSPE-PEG(2000)呈现在颗粒表面。这导致了完全的电荷屏蔽、低肝窦摄取,并在异种移植模型中将32.5%的注射剂量递送至NCI-H460肿瘤。

相似文献

1
Nanoparticles evading the reticuloendothelial system: role of the supported bilayer.
Biochim Biophys Acta. 2009 Oct;1788(10):2259-66. doi: 10.1016/j.bbamem.2009.06.022. Epub 2009 Jul 10.
4
Surface-modified LPD nanoparticles for tumor targeting.
Ann N Y Acad Sci. 2006 Oct;1082:1-8. doi: 10.1196/annals.1348.001.
5
Calcium phosphate nanoparticles with an asymmetric lipid bilayer coating for siRNA delivery to the tumor.
J Control Release. 2012 Feb 28;158(1):108-14. doi: 10.1016/j.jconrel.2011.10.020. Epub 2011 Oct 26.
6
Comparison of Modular PEG Incorporation Strategies for Stabilization of Peptide-siRNA Nanocomplexes.
Bioconjug Chem. 2016 Oct 19;27(10):2323-2331. doi: 10.1021/acs.bioconjchem.6b00304. Epub 2016 Sep 16.
9
Multifunctional nanoparticles delivering small interfering RNA and doxorubicin overcome drug resistance in cancer.
J Biol Chem. 2010 Jul 16;285(29):22639-50. doi: 10.1074/jbc.M110.125906. Epub 2010 May 11.
10
Biodegradable calcium phosphate nanoparticle with lipid coating for systemic siRNA delivery.
J Control Release. 2010 Mar 19;142(3):416-21. doi: 10.1016/j.jconrel.2009.11.008. Epub 2009 Nov 15.

引用本文的文献

1
Feedback Loops Shape Oxidative and Immune Interactions in Hepatic Ischemia-Reperfusion Injury.
Antioxidants (Basel). 2025 Jul 31;14(8):944. doi: 10.3390/antiox14080944.
2
Dual conjugation of magnetic nanoparticles with antibodies and siRNA for cell-specific gene silencing in vascular cells.
Front Drug Deliv. 2024 Aug 15;4:1416737. doi: 10.3389/fddev.2024.1416737. eCollection 2024.
3
A comprehensive review of using nanomaterials in cancer immunotherapy: Pros and Cons of clinical usage.
3 Biotech. 2025 Jul;15(7):205. doi: 10.1007/s13205-025-04362-x. Epub 2025 Jun 9.
4
Development of Theranostic Lu-Labeled Polymeric Nanoparticles (Lu-PNPs) for the Treatment of Head and Neck Cancer.
ACS Appl Bio Mater. 2025 Jun 16;8(6):5266-5275. doi: 10.1021/acsabm.5c00579. Epub 2025 May 29.
5
Innovative Approaches to Enhancing the Biomedical Properties of Liposomes.
Pharmaceutics. 2024 Nov 27;16(12):1525. doi: 10.3390/pharmaceutics16121525.
6
pH-Responsive Polyethylene Glycol Engagers for Enhanced Brain Delivery of PEGylated Nanomedicine to Treat Glioblastoma.
ACS Nano. 2025 Jan 14;19(1):307-321. doi: 10.1021/acsnano.4c05906. Epub 2025 Jan 3.
7
Strategies for Non-Covalent Attachment of Antibodies to PEGylated Nanoparticles for Targeted Drug Delivery.
Int J Nanomedicine. 2024 Oct 1;19:10045-10064. doi: 10.2147/IJN.S479270. eCollection 2024.
8
RNA-Based Vaccines and Therapeutics Against Intracellular Pathogens.
Methods Mol Biol. 2024;2813:321-370. doi: 10.1007/978-1-0716-3890-3_21.
9
New insights into targeted therapy of glioblastoma using smart nanoparticles.
Cancer Cell Int. 2024 May 7;24(1):160. doi: 10.1186/s12935-024-03331-3.
10
Designing Gold Nanoparticles for Precise Glioma Treatment: Challenges and Alternatives.
Materials (Basel). 2024 Mar 1;17(5):1153. doi: 10.3390/ma17051153.

本文引用的文献

2
Efficient oncogene silencing and metastasis inhibition via systemic delivery of siRNA.
Mol Ther. 2008 May;16(5):942-6. doi: 10.1038/mt.2008.51. Epub 2008 Mar 18.
3
Efficient gene silencing in metastatic tumor by siRNA formulated in surface-modified nanoparticles.
J Control Release. 2008 Feb 18;126(1):77-84. doi: 10.1016/j.jconrel.2007.11.002. Epub 2007 Nov 17.
4
Tumor-targeted delivery of siRNA by self-assembled nanoparticles.
Mol Ther. 2008 Jan;16(1):163-9. doi: 10.1038/sj.mt.6300323. Epub 2007 Oct 9.
5
Influence of poly(ethylene glycol) grafting density and polymer length on liposomes: relating plasma circulation lifetimes to protein binding.
Biochim Biophys Acta. 2007 Jun;1768(6):1367-77. doi: 10.1016/j.bbamem.2006.12.013. Epub 2007 Jan 3.
7
Lipid-protamine-DNA-mediated antigen delivery.
Curr Drug Deliv. 2005 Oct;2(4):401-6. doi: 10.2174/156720105774370168.
8
Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles.
Int J Pharm. 2006 Jan 3;307(1):93-102. doi: 10.1016/j.ijpharm.2005.10.010. Epub 2005 Nov 21.
9
Liposome opsonization.
J Liposome Res. 2005;15(1-2):109-39. doi: 10.1081/lpr-64971.
10
Effect of grafted PEG on liposome size and on compressibility and packing of lipid bilayer.
Chem Phys Lipids. 2005 Jun;135(2):117-29. doi: 10.1016/j.chemphyslip.2005.02.003. Epub 2005 Mar 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验